• Title/Summary/Keyword: Safety of Facilities

Search Result 3,171, Processing Time 0.033 seconds

Spatial Pattern and Trend Analysis of Parking-related Electronic Civil Complaints in Jinju-Si (진주시 주차관련 전자민원의 공간패턴분석 및 추이분석)

  • Won, Tae-Hong;Seo, Min-Song;Yoo, Hwan-Hee
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • Korea, which has undergone a rapid urbanization, faces various problems such as the management of facilities, safety, environment and transportation. To solve civil complaints, local governments receive electronic complaints, but complaints are increasing. Therefore, this study conducted the spatial distribution pattern analysis and the trend analysis by presenting location data on spatial information through Geo-coding by collecting electronic civil petition data over the last 10 years targeting Jinju city. Using the ARIMA model, this study predicted the occurrence of complaints over the next two years (2016~2017) through a time series forecast analysis. As a result, the complaints related to illegal parking were the highest, the complaint related to noise was the second highest, and the complaints related to illegal garbage dumping was the third highest. In addition, the analysis of the spatial distribution pattern shows that the largest hot spot was formed in the central commercial district every year. As a result of the time series forecasting analysis for the crackdown of the illegal parking, complaints increased slightly. To compare the predicted value and the actual data showed a similar pattern. It is judged that this study will be utilized to establish effective countermeasures against civil complaints.

Relationships of TVOC with Several Aromatic Hydrocarbon Constituents at Preschool Facilities

  • Yoon, Chung-Sik;Choi, In-Ja;Ha, Kwon-Chul;Park, Dong-Uk;Park, Doo-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.404-411
    • /
    • 2006
  • 이 연구의 목적은 유치원에서 총 휘발성 유기화합물의 농도를 평가하고, 총 휘발성 유기화합물 농도와 대표적인 8개 방향족 화합물의 상관관계를 조사하는데 있다. 도시에 위치한 11개 유치원의 실내와 실외에서 각각 30개, 11개의 지역시료를, 시골에 위치한 4개 유치원에서는 각각 10개, 4개의 시료를 테낙스 튜브를 이용하여 오전에 1-2시간 채취하였다. 채취한 시료는 열탈착하여 가스크로마토그래피-질량분석기로 분석하였다. 13가지 물질을 각각의 표준물질로 개별 정량하여 이중 빈번히 발견되는 8가지 방향족 유기화합물은 상관관계 평가에 사용하였다. 총 휘발성 유기화합물은 톨루엔을 기준으로 정량하였다. 도시에 위치한 유치원 실내의 총 휘발성 유기화합물 농도가 높았고, 조사 건수의 50%가 환경부 및 교육인적자원부의 가이드라인($400{\mu}g/m^{3}$)을 초과하였다. 도시지역의 유치원 실내 및 실외의 기하평균은 각각 $387.9{\mu}g/m^{3}$$134.9{\mu}g/m^{3}$이었고, 시골지역 유치원에서는 각각 $189.6{\mu}g/m^{3},;74.4{\mu}g/m^{3}$이었다. 톨루엔, 크실렌, 에틸벤젠, 정량한 유기 화합물 총합, 총 휘발성 유기화합물은 기하정규분포를 하였다. 벤젠, 톨루엔, 에틸벤젠, 크실렌(BTEX)은 도시에 위치한 유치원에서 농도도 높고, 총 휘발성 유기화합물중 함량도 높았고, 시골지역에서는 농도와 상대적 함량이 낮았다. 도시지역에서는 총 휘발성 유기화합물 중 BTEX의 비중이 25.2%였고 정량한 13가지 유기화합물 중에서는 35.6%를 차지하였다. BTEX 각각 개별물질은 미국 환경보호청이 제시하는 일일 노출 기준량(Reference Concentration; RfC) 보다는 현저히 낮았다. 총 휘발성 유기화합물읜 농도는 실내가 실외 보다 높았다(I/O ratio 2.5). BTEX의 상대적 함량도 실내가 실외보다 높아 실내에도 발생원이 있음을 암시하고 있다. 자료 분석결과 유치원 실내의 벤젠은 실외로부터 유입되고 있었고, 톨루엔, 에틸벤젠, 크실렌은 실외뿐 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.

Preliminary Study on the Simulation for Urban Railway Facility Performance Assessment (도시철도시설 성능평가 시뮬레이션 구현을 위한 기초 연구)

  • Kang, Goune;Jung, Insu;Kim, Jung-yeol;Seo, MyoungBae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.190-198
    • /
    • 2020
  • For domestic urban railways, which have a 19.7% aging rate, a performance evaluation is necessary to establish capital improvement investment plans. The performance evaluation, which was recently enacted in the relevant law, points out the excessive time and effort for acquiring data and evaluation. This study developed a performance evaluation simulation prototype using a virtual reality (VR) method to use as training contents for railway performance evaluations. The practical use of the VR technique to reduce the working time under poor environment conditions was confirmed through a literature review. A survey and consultation were conducted for urban railway experts to determine the weight of the performance evaluation items and the facility breakdown structure. This information was utilized to develop performance evaluation sheets for simulation. Based on the evaluation sheet, a training content prototype that evaluates the performance of platform safety doors was developed using VR techniques with HTC VIVE equipment. VR simulation tests were conducted for six players, and the prototype was sufficiently advantageous for a visual confirmation of the facility information. The result is expected to be useful for engineers to understand the performance evaluation process efficiently before an actual performance evaluation of urban railway facilities.

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

A Study on Updated Object Detection and Extraction of Underground Information (지하정보 변화객체 탐지 및 추출 연구)

  • Kim, Kwangsoo;Lee, Heyung-Sub;Kim, Juwan
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • An underground integrated map is being built for underground safety management and is being updated periodically. The map update proceeds with the procedure of deleting all previously stored objects and saving newly entered objects. However, even unchanged objects are repeatedly stored, deleted, and stored. That causes the delay of the update time. In this study, in order to shorten the update time of the integrated map, an updated object and an unupdated object are separated, and only updated objects are reflected in the underground integrated map, and a system implementing this technology is described. For the updated object, an object comparison method using the center point of the object is used, and a quad tree is used to improve the search speed. The types of updated objects are classified into addition and deletion using the shape of the object, and change using its attributes. The proposed system consists of update object detection, extraction, conversion, storage, and history management modules. This system has the advantage of being able to update the integrated map about four times faster than the existing method based on the data used in the experiment, and has the advantage that it can be applied to both ground and underground facilities.

Research on Real-time Flow Rate Measurement and Flood Forecast System Based on Radar Sensors (레이다 센서 기반 실시간 유량 측정 및 홍수 예측 시스템 연구)

  • Lee, Young-Woo;Seok, Hyuk-Jun;Jung, Kee-Heon;Na, Kuk-Jin;Lee, Seung-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.288-290
    • /
    • 2022
  • As part of the SOC digitization for smart water management and flood prevention, the government reported that automatic and remote control system for drainage facilities (180 billion won) to 57% of national rivers and established a real-time monitoring system (30 billion won). In addition, they were also planning to establish a smart dam safety management system (15 billion won) based on big data at 11 regions. Therefore, research is needed for smart water management and flood prevention system that can accurately calculate the flow rate through real-time flow rate measurement of rivers. In particular, the most important thing to improve the system implementation and accuracy is to ensure the accuracy of real-time flow rate measurements. To this end, radar sensors for measuring the flow rate of electromagnetic waves in the United States and Europe have been introduced and applied to the system in Korea, but demand for improvement of the system continues due to high price range and performance. Consequently, we would like to propose an improved flow rate measurement and flood forecast system by developing a radar sensor for measuring the electromagnetic surface current meter for real-time flow rate measurement.

  • PDF

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD (CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안)

  • Eun-Hee Kim;Seung-Hyo An;Jun-Seo Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.

Development of Two-Dimensional Near-field Integrated Performance Assessment Model for Near-surface LILW Disposal (중·저준위 방사성폐기물 천층처분시설 근계영역의 2차원 통합성능평가 모델 개발)

  • Bang, Je Heon;Park, Joo-Wan;Jung, Kang Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.315-334
    • /
    • 2014
  • Wolsong Low- and Intermediate-level radioactive waste (LILW) disposal center has two different types of disposal facilities and interacts with the neighboring Wolsong nuclear power plant. These situations impose a high level of complexity which requires in-depth understanding of phenomena in the safety assessment of the disposal facility. In this context, multidimensional radionuclide transport model and hydraulic performance assessment model should be developed to identify more realistic performance of the complex system and reduce unnecessary conservatism in the conventional performance assessment models developed for the $1^{st}$ stage underground disposal. In addition, the advanced performance assessment model is required to calculate many cases to treat uncertainties or study parameter importance. To fulfill the requirements, this study introduces the development of two-dimensional integrated near-field performance assessment model combining near-field hydraulic performance assessment model and radionuclide transport model for the $2^{nd}$ stage near-surface disposal. The hydraulic and radionuclide transport behaviors were evaluated by PORFLOW and GoldSim. GoldSim radionuclide transport model was verified through benchmark calculations with PORFLOW radionuclide transport model. GoldSim model was shown to be computationally efficient and provided the better understanding of the radionuclide transport behavior than conventional model.

A study on use of quantitative risk analysis on life safety performance for the effect of fixed fire fighting system at road tunnel fires (정량적 위험성 평가를 활용한 도로터널 화재시 물분무 소화설비의 피난 안전 효과 연구)

  • Park, Kyung-Hwan;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.1-22
    • /
    • 2012
  • This paper tried to verify whether the fixed fire fighting system (FFFS) that is installed in road tunnel improves evacuation performance or not. Verification was performed according to the Disaster Prevention Facilities Installation and Management Guide at Road Tunnel. Twenty seven different fire scenarios were set up for the verification and the cases that FFFS was installed were compared with the cases that FFFS was not installed. The result of the comparison showed that the average equivalent death was reduced in 26 cases out of 27 cases when water spray extinguishing system was installed. It was confirmed that the risk when was not installed was unacceptable in Hong Kong and the Netherlands. On the other hand, it was confirmed that the risk was reduced to as low as reasonably practicable (ALARP) when was installed. The cumulative frequency of average death in case with FFFS was compared against the frequency of death without FFFS: death of one or more is about 50 times less; 10 or more is about 100 times less; and the death of more than 100 is four times less. It was verified that FFFS makes improved conditions to escape from the fires in road tunnel.

Study on Seismic Analysis and Test for Seismic Qualification of 245kV GIS (245kV 가스절연개폐장치의 내진성능 실증을 위한 시험 및 해석)

  • Kim, Yu-Gyeong;Kwon, Tae-Hoon;Jeong, Yeong-Jin;Kim, Hong-Tae;Kim, Young-Joong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.715-722
    • /
    • 2013
  • Gas insulated switchgear is large-sized electric equipment for providing a reliable supply of electric power. Recently, seismic tests of electric equipment using a shaking table have been mandated because seismic performance has become an increasingly important issue. However, basic analysis methods continue to be used because some electric equipment is too large for shaking table facilities. Thus, a reliable analysis method should be developed for large-scale electric equipment. This study aims to evaluate the seismic qualification of a 245kV GIS in accordance with IEEE-693 and to validate the analysis method by comparing it with test results. Both the test and the analysis showed that the 245kV GIS has proper seismic safety. Furthermore, the differences between the analysis and the test results are less than 10% for an accurately given mass, stiffness, and input acceleration. It is expected that this study can be used for the seismic qualification of large-scale electrical structures.