• Title/Summary/Keyword: Safety of Diagnostic Radiation

Search Result 86, Processing Time 0.027 seconds

Clinical Application of Gold Nanoparticles for Diagnosis and Treatment

  • Baek, Seung-Kuk
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Advances in nanobiotechnology have presented numerous possibilities of more effective diagnostic and therapeutic options. In particular, gold nanoparticles have demonstrated the potential for application in molecular imaging and treatment of cancers, including drug delivery system of certain target molecules, enhancement of radiation therapy, and photothermal treatment. This review discusses the properties, mechanism of action, and clinical application of gold nanoparticles. Although the safety of nanoparticles is yet to be ascertained, there is no doubt that in the future, nanotechnology will play an important role in the development and enhancement of a wide range of diagnostic and treatment modalities.

A Study on Establishment of Basic Safety and Essential Performance Criteria of Mobile Computed Tomography (이동형 전산화단층촬영장치의 기본 안전 및 필수 성능 기준을 마련하기 위한 연구)

  • Kim, Eun Hye;Park, Hye Min;Kim, Jung Min
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.261-267
    • /
    • 2021
  • As the number of Coronavirus Disease-19 (COVID-19) patients increases in a global pandemic situation, the usefulness of mobile computed tomography (CT) is gaining attention. Currently, mobile CT follows the basic safety and essential performance evaluation criteria of whole-body or limited-view X-ray CT in order to obtain device approval and evaluation in the Republic of Korea. Unlike stationary CT, mobile CT is not operated in shielded areas but rather areas such as intensive care units, operating rooms, or isolation rooms. Therefore, it requires a different basic safety and essential performance evaluation standard than stationary CT. In this study, four derived basic safety evaluation criteria related to electrical, mechanical, and radiation safety were included (dose indication test, protection against stray radiation, safety measures against excessive X-rays, half-value layer measurement); and seven essential performance evaluation criteria were included (tube voltage accuracy, mAs accuracy, radiation dose reproducibility, CT number of water, noise, uniformity, and spatial resolution); total eleven basic safety and essential performance evaluation criteria were selected. This study aims to establish appropriate basic safety and essential performance evaluation criteria for simultaneously obtaining images with diagnostic value and reducing the exposure of nearby patients, medical staff, and radiologic technologists during the use of mobile CT.

Quality Control of Diagnostic X-ray Units for Animal Hospital (동물병원의 방사선발생장치 정도관리에 대한 연구)

  • Kim, Sang-Woo;Lee, Ji-Hoon;Park, Yei-Seul;Rhim, Jea-Dong;Seoung, Youl-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.231-237
    • /
    • 2010
  • The purpose of this study was to investigate the actual conditions of radiation safety supervision in animal clinics using quality assurance (QA) and quality control (QC) of diagnostic X-ray units. The surveys for QA/QC, equipment condition, and safety supervision were carried out in 18 animal clinics randomly. The QA/QC included reproducibility of dose exposure, kVp, mAs, collimator accuracy test, collimator luminance test, X-ray view box luminance test, grounding system equipment test and external leakage current test. As a result, 44.44% of reproducibility of dose exposure was proper, 81. 25% of kVp test was good, and 100% of mAs test was appropriate. Also, 66.66% of collimator accuracy test was proper, 61.11% of collimator luminance test was good, 53.13% of X-ray view box luminance test was suitable. In addition, only 5.55% of grounding system equipment and ground resistance was proper, 63.64% of external leakage current test was appropriate in grounding system equipment test.

  • PDF

Acoustic Power Measurement System of Array Probes for Ultrasonic Diagnostic Equipment Using Radiation Force Balance Methods (방사힘 측정법을 이용한 초음파 진단장치용 배열 탐침자의 음향파워 측정시스템)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.355-364
    • /
    • 2010
  • Considering biological safety, it is very important to measure acoustic power from ultrasonic array probe for diagnostic ultrasound imaging applications. In this paper, to measure acoustic power from each element on array probe for ultrasonic diagnostic equipment, we reconstruct and automate the acoustic power measurement system. The acoustic power from linear, phased and curved array were measured and analyzed. As a result of measurement, the effects caused by directivity of sound beam from curved array were founded. To remove these effects, we developed and applied the correction model. The proposed system is useful to evaluate characteristics of the acoustical output power of array probe.

Study of photon beam quality tool at magnetic field change in bending magnet (편향전자석의 자장변화에 따른 광자선 선질평가에 관한 고찰)

  • Kim, Jeong-Ho;Yoo, Se-Jong;Park, Myeong-Cheol;Bae, Seok-Hwan;Kim, Ki-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.433-439
    • /
    • 2014
  • Beam quality is changed about magnetic field of bending magnet. Evaluation of beam quality using PDD(Percentage Depth Dose) at 10cm depth at recommendation of AAPM(America Academy of Pain Medicine). However this evaluation shows fragmentary element. Therefore this study is applied to three value, 10cm divided by 5cm depth PDD, 20cm divided by 10cm depth PDD, 30cm divided by 20cm depth PDD, at change the magnetic field. PDD is measured at magnetic field changed ${\pm}1%$, ${\pm}2%$ at 6MV(Mega Voltage), 10MV photon. The plan technique is 3 portal plan using Core-Plan at human pelvic phantom. Conventional and presented methods are compared at maximum and minimum dose. The presented method increased discernment of relieve the unequal distribution and energy area than conventional method. Henceforth, application of presented method will be considered. Development of energy measurement method and detector miniaturization will be needed about continuous study.

Reliability estimation about quality assurance method of radiotherapy planning (방사선치료계획 정도관리 방법에 따른 신뢰도 평가)

  • Kim, Jeong-Ho;Kim, Gha-Jung;Yoo, Se-Jong;Kim, Ki-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.119-124
    • /
    • 2015
  • According as radiation therapy technique develops, standardization of radiation therapy has been complicated by the plan QA(Quality Assurance). However, plan QA tools are two type, OADT (opposite accumulation dose tool) and 3DADT (3 dimensional accumulation dose tool). OADT is not applied to evaluation of beam path. Therefore tolerance error of beam path will establish measurement value at OADT. Plan is six beam path, five irradiation field at each beam path. And beam path error is 0 degree, 0.2 degree, 0.4 degree, 0.6 degree, 0.6 degree, 0.8 degree. Plan QA accomplishes at OADT, 3DADT. The more path error increases, the more plan QA error increases. Tolerance error of OADT path is 0.357 using tolerance error of conventional plan QA. Henceforth plan QA using OADT will include beam path error. In addition, It will increase reliability through precise and various plan technique.

A Study on Change Image According to Recumbent Position Holding Time for Patient Safety (In Chest Lateral Decubitus Examination) (환자안전을 고려한 횡와위 유지시간에 따른 영상변화에 관한 연구 (흉부 측와위 촬영 시))

  • Kim, Ki-Jin;Jeong, Chang-Min;Yoo, Se-Jong;Choi, Won-Jin;Kim, Jeong-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.1
    • /
    • pp.147-152
    • /
    • 2016
  • Chest lateral decubitus is a chest examination to determine the persence of pleural fluid in thorax. In this study, we prepare recumbent holding position time standard of chest lateral decubitus. The records of 15 patients with chest lateral decubitus between May and Jun. Recumbent holding time is 30, 60, 90, 120, 180, 210, 240 seconds. The result is fluid level change between 0.88mm to 9.63. Fluid heigh change between 9.9 percent to 42.5 percent. We can confirm fluid level change with chest decubitus image. The proper time for fluid level change is 180 seconds.

Application and development of radiation worker management program (방사선종사자 관리프로그램의 개발 및 적용)

  • Kim, Jeong-Ho;Yoo, Se-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.367-373
    • /
    • 2017
  • The O2O service is an efficient way to operate based on systematic connection of the offline and online states. At present, education, health checkups, and exposure management of radiation workers are separated from offline and online at nuclear-related workplaces. Therefore, we developed a radiation workers management program at the workplace and tried to link online and offline states. After applying the program to the local network, we developed a written employee management system as a computer program and applied it to radiation workers and radiation safety managers at a university hospital in Daejeon using a questionnaire. As a result of the survey, the results of this program can enhance the awareness of safety management and work convenience. There is also a demand for radiation closed workers as well as radiation relative workers. It will be necessary to collect opinions regarding the characteristics of each workplace for the generalization of the radiation workers management program. As a result, real-time radiation safety management and work improvement can be expected through network connections between the workplace, supervisory authority, and related organizations in the future. If a circle structure is formed using the employee management program, development of radiation safety management can be expected.

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O.;ALMisned, Ghada;Issa, Shams A.M.;Zakaly, Hesham M.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3317-3323
    • /
    • 2022
  • Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

Radiation Doses and Quality Assurance in Cone Beam CT(CBCT) (임상가를 위한 특집 4 - CBCT 검사법의 정도관리 및 선량)

  • Choi, Yong-Suk;Kim, Gyu-Tae;Hwang, Eui-Hwan
    • The Journal of the Korean dental association
    • /
    • v.52 no.3
    • /
    • pp.153-163
    • /
    • 2014
  • 3-dimensional information for anatomic stucture plays a role as integral part in clinical aspect of dental practice. CBCT(cone beam computed tomography) has been accepted as useful diagnostic tool offering Volume data and images for evaluating teeth and jaws in lower radiation dose than conventional CT. CBCT equipment is essential for the quality assurance of it to ensure continued satisfactory performance and result of adequate images. Dental practitioner and oral and maxillofacial radiologist should have a responsibility and critical thinking to deliver this technology to patients in a responsible way, so that diaganostic value is maximised and radiation doses kept as low as resonably achievable. CBCT imaging modality should be used only after a review of the patient's health and imaging history and the completion of a thorough clinical examination. Clinical guidelines are systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances Dental practitioners should prescribe CBCT imaging only when they expect that the diagnostic yield will benefit patient care, enhance patient safety or improve clinical outcomes significantly. Knowledge of patient dose is essential for clinicians who are making the decision regarding the justification of the exposure. There are some limitation in the measurement of patient dose in CBCT for the approval and adaptation of conventinal methodolgy in CT. It is also important to ensure that doses are optimised and in line with any national and international guidelines. The higher radiation doses of CBCT compared with conventional radiography, mean that high standards must be maintained. The Quality Assurance(QA) programme should entail surveys and checks that are performed according to a regular timetable. QA programme should be maintained by staff to ensure adherence to the programme and to raise its importance among staff.