• Title/Summary/Keyword: Safety design and operation

Search Result 999, Processing Time 0.026 seconds

An Onboard Image Processing System for Road Images (도로교통 영상처리를 위한 고속 영상처리시스템의 하드웨어 구현)

  • 이운근;이준웅;조석빈;고덕화;백광렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.498-506
    • /
    • 2003
  • A computer vision system applied to an intelligent safety vehicle has been required to be worked on a small sized real time special purposed hardware not on a general purposed computer. In addition, the system should have a high reliability even under the adverse road traffic environment. This paper presents a design and an implementation of an onboard hardware system taking into account for high speed image processing to analyze a road traffic scene. The system is mainly composed of two parts: an early processing module of FPGA and a postprocessing module of DSP. The early processing module is designed to extract several image primitives such as the intensity of a gray level image and edge attributes in a real-time Especially, the module is optimized for the Sobel edge operation. The postprocessing module of DSP utilizes the image features from the early processing module for making image understanding or image analysis of a road traffic scene. The performance of the proposed system is evaluated by an experiment of a lane-related information extraction. The experiment shows the successful results of image processing speed of twenty-five frames of 320$\times$240 pixels per second.

A Study on the Quantitative Determination of Failure Effect Probability for Criticality Analysis on System (시스템의 치명도 분석을 위한 고장영향확률 정량화 방안 연구)

  • Lee, Myeong-seok;Choi, Seong-Dae;Hur, Jang-wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.31-37
    • /
    • 2019
  • The inter-development of FMECA is very important to assess the effect of potential failures during system operation on mission, safety and performance. Among these, criticality analysis is a core task that identifies items with high risk and selects the analyzed objects as the key management targets and reflects their effects to the design optimization. In this paper, we analyze the theory related to criticality analysis following US military standard, and propose a method to quantify the failure effect probability for objective criticality analysis. The criticality analysis according to the US military standard depends on the subjective judgment of the failure probability. The methodology for quantifying the failure effect probability is presented by using the reliability theory and the Bayes theorem. The failure rate is calculated by applying the method to quantify failure effect probability.

Seismic responses of nuclear reactor vessel internals considering coolant flow under operating conditions

  • Park, Jong-beom;Lee, Sang-Jeong;Lee, Eun-ho;Park, No-Cheol;Kim, Yong-beom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1658-1668
    • /
    • 2019
  • Nuclear power generates a large portion of the energy used today and plays an important role in energy development. To ensure safe nuclear power generation, it is essential to conduct an accurate analysis of reactor structural integrity. Accordingly, in this study, a methodology for obtaining accurate structural responses to the combined seismic and reactor coolant loads existing prior to the shutdown of a nuclear reactor is proposed. By applying the proposed analysis method to the reactor vessel internals, it is possible to derive the seismic responses considering the influence of the hydraulic loads present during operation for the first time. The validity of the proposed methodology is confirmed in this research by using the finite element method to conduct seismic and hydraulic load analyses of the advanced APR1400 1400 MWe power reactor, one of the commercial reactors. The structural responses to the combined applied loads are obtained using displacement-based and stress-based superposition methods. The safety of the subject nuclear reactor is then confirmed by analyzing the design margin according to the American Society for Mechanical Engineers (ASME) evaluation criteria, demonstrating the promise of the proposed analysis method.

Control system design for vessel towing system by activating rudders of the towed vessel

  • Lee, Dong-Hun;Chakir, Soumayya;Kim, Young-Bok;Tran, Duc-Quan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.943-956
    • /
    • 2020
  • In this study, the motion control problem of the vessel towed by a towing ship (tugboat) is considered. The non-powered towed ship is dragged by the towing ship. Even though the towed ship is equipped with propulsion systems, they cannot be used at low or constant speeds due to safety issues. In narrow canals, rivers, and busy harbor areas especially, where extreme tension is required during towing operation, the course stability of the towed vessel depends on the towing ship. Therefore, the authors propose a new control strategy in which the rudder system of the towed vessel is activated to provide its maneuverability. Based on the leader-follower system configuration, a nonlinear mathematical model is derived and a back-stepping control is designed. By simulation and experiment results with a comparison study, the usefulness and effectiveness of the proposed strategy are validated.

A Study on the Architectural Planning of the Ward in Infectious Disease Hospitals (감염병 전문병원의 병동부 건축계획에 관한 연구)

  • Choi, Kwangseok
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.27 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • Purpose: This study analyzed the architectural planning factors of the ward in infectious disease hospitals, such as functional unit planning, ward configurations, spatial compositions & circulation, and detailed architectural planning. Through these, the facility guidelines of infectious disease hospitals are summarized, focusing on the differences from the wards of non-infectious hospitals. Methods: This study was conducted by literature review of research reports, papers, design cases, and guidelines, based on the experiences of field surveys for infectious disease hospitals. Results: The result of this study can be summarized into a few points. 1) Infectious disease hospitals need to establish an operation plan with the concept of continuity of care, as an extension of existing facilities. 2) The types of ward configuration for infectious disease hospitals has many variables, so an appropriate type should be selected according to the hospital's operating policy. 3) Various spatial composition types of the ward can be planned by the arrangement of traffic cores and areas of patient groups. At this time, the main planning considerations are safety, efficiency, and comfort. 4) As elements of the detailed plan, It is necessary to consider the types & dimensions of patient rooms, the relationships between nursing stations & sub-stations, and supplementations of medical support functions & convenience facilities. Implications: Since there are many differences in function from the ward of non-infectious hospitals, appropriate facility guidelines for infectious disease hospital are required.

Design and Implementation of Problem Based Learning in Training Ship (PBL(Problem Based Learning) 수업 방법을 활용한 실습선 수업 설계 및 운영)

  • Kim, Bu-Gi;Kim, Noo-Ree;Kim, Jun-Ho;Choi, Hyun-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.743-748
    • /
    • 2019
  • This study suggested a process of redesigning and implementing problem based learning to enhance students' active and collaborative learning activities and learning outcomes. The results of this study are as follows. First, the ef ect of class participation, academic self-regulated learning, and academic self-efficacy were examined. As a result, first, the average of learning activity, class extension, and participation in class was high in the difference between before and after class. Second, the post average scores of all the factors except the 'evaluation' were higher than before. Third, academic self-efficacy showed a significant difference only in 'task preference'. Finally, students' satisfaction with the class was also high. The professor was also able to grasp the characteristics of individual students by designing and operating the classes using PBL, and it was confirmed that the interaction with students increased. Based on the results of this study, we discussed the limitations and educational implications of the problem based learning class and propose successful problem based learning design and operation of the classroom.

Initial System for Automation of PDQ-based Shape Quality Verification of Naval Ship Product Model (제품데이터품질(PDQ) 평가에 따른 함정 제품모델의 형상 품질검증 자동화 초기 시스템)

  • Oh, Dae-Kyun;Hwang, In-Hyuck;Ryu, Cheol-Ho;Lee, Dong-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, R.O.K. Navy is increasing re-usability of design data and application of M&S(Modeling and Simulation) through the establishment of collaborative product development environment focused on Naval Ship Product Model(NSPM). As a result, the reliability of the result of design is getting better, and furthermore, a study to improve quality of construction through simulation of production/operation is in progress. Accordingly, the database construction of design data and the DB(Database) quality become important, but there was not research related to those or it was just initial state. This paper conducted research about system of the quality verification process of shape elements which compose NSPM based on the quality verification guideline of NSPM as the result of the precedent study. The hull surface was limited as verification object. The study to verify two things that application of basic drawing by the cad model of hull surface, and whether there is error in the geometric quality of cad model was progressed. To achieve this goal, the verification criteria and algorithm were defined and the prototype system which is based on was developed.

Stability Analysis of Existing Tunnel in Stratified Sedimentary Rocks Subjected to Bridge Pier Load (퇴적암 지역에서의 교각 기초 하중을 받는 기존터널의 안정성에 대한 해석적 고찰)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 1998
  • An anisotropic characteristics of stratified sedimentary rocks should be considered in the design of tunnel. The second line of Taegu subway is under construction through the sedimentary rocks which is stratified by alternation of shale and sandstone, and Tongsoe over bridge road is planned to be constructed along the subway line. Thus the subway twin tunnels will be subjected by the bridge load of 76.2 MN per pier that will be placed in between the twin tunnels of the subway line. A numerical analysis is carried out for the stability of the twin tunnel, and the result shows that the maximum principal stress of surrounding ground is increased by 5∼6 MPa and the additional displacement of concrete lining is reached up to 8∼10mm due to the external bridge load. For the safety operation of the subway, reinforcement of the tunnel structure is highly recommended.

  • PDF

Numerical Analysis on development of the Cooling System for E-Scooter Battery Pack (전동스쿠터용 배터리팩 냉각시스템 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.30-36
    • /
    • 2016
  • The battery pack which is a main component of E-scooter needs the cooling system because it is the matter of battery safety in spite of the incresing of charge efficiency due to decress the internal resistence in the condition of high temperature. The purpose of this study is to analyse the effects of cooling methods which is the control of air's inlet and outlet operating timing. When each battery had large temperature deviation in the battery pack, the difference of battery's performance and efficiency were appeared. In this study, the cooling performance of battery pack has been improved by changing the operation timing of inlet and outlet fan, it improved the performance and efficiency of battery. The numerical analysis using a commercial code ANSYS CFX version 17.0 were used for the study.

Implementation of CWP MRT Data Processing Module for Efficient Correlating Flight Plan (효율적인 비행계획 연관을 위한 CWP MRT 데이터 처리 모듈 구현)

  • Kim, Kanghee;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.268-277
    • /
    • 2014
  • It is very important to correlate flight plan for safe and prompt ATC(air traffic control) operation. In this paper, we design CWP(controller working position) MRT(multi radar tracking) processing module to achieve improvement of overall ATC automation system's performance by minimizing network traffic overload when correlating MRT with flight plan. This implemented module can guarantee efficiency and safety of ATC automation system by applying distributed correlated manner, and reduce network usage by using encoded flight plan correlated MRT data format. We found that this module has 8.54~12.11% lower network usage and 8.37~11.27% higher network traffic fairness than the module using standalone manner.