• Title/Summary/Keyword: Safety control

Search Result 7,909, Processing Time 0.032 seconds

A Study on Using PSM Policy for the Serious Accident Prevention of Construction (건설업 중대재해 예방을 위한 PSM 제도 활용에 관한 연구)

  • 정범모;양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 2002
  • As domestic buildings have been large-scaled, diversified and high-rise, there have been a consistent demand for design, development of construction technology and accident prevention activity as well as quality enhancement. In spite of governmental and related institutions' efforts for reducing national losses which come from numerous accidents, there have been endless small and large accidents on the construction site and thus, it is urgent to conduct empirical researches in this area. Currently safety supervision system in construction industry has enforced harm and danger prevention planning system, however it merely stick to other existing materials. In addition, it is difficult to put it into practice in that it requires bearing too much burden to draw out the planning itself in a case of large construction work. Consequently in this paper we select evaluation criteria by construction progress, classify into several categories, and regard potential danger which often occurs, as a evaluation criterion. Further step is to allow workers or collaborated companies to express their expert opinions or experiences and to encourage quality and process control and autonomous safety control by applying PSM method. The reason why PSM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries,' thereby strengthening there competitive edges. Boost of safety control system by PSM method will make an enormous contribution to preventing construction accidents on the site by establishing and securing an autonomous safety control system.

Parametric Study of Asymmetric Base-Isolation Coupling Control System for Vibration Control of Adjacent Twin Buildings (쌍둥이 인접구조물의 진동 제어를 위한 비대칭 지진격리 연결 제어시스템의 매개변수연구)

  • Kim, David;Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.45-51
    • /
    • 2022
  • This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.

A Study on the Safety Plan for a Train Control System (열차제어시스템의 안전계획 수립에 관한 연구)

  • Kim Jong-Ki;Shin Duc-Ko;Lee Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.264-270
    • /
    • 2006
  • In this paper we present a safety plan to be applied to the development of the TCS(Train Control System). The safety plan that can be applied to the life cycle of a system, from the conceptual design to the dismantlement, shows the whole process of the paper work in detail through the establishment of a goal, analysis and assessment, the verification. In this paper we study about the making a plan, the preliminary hazard analysis, the hazard identification and analysis to guarantee the safety of the TCS. The process far the verification of the system safety is divided into several steps based on the target system and the approaching method. The guarantee of the system safety and the improvement of the system reliability is fellowed by the recommendation of the international standards.

A study on An Application for Ensuring Safety of Computer Based Automatic Train Control System (컴퓨터기반 자동열차제어장치의 안전성 확보에 관한 연구)

  • Lee jongwoo;SHIN jongwoo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.261-268
    • /
    • 2005
  • This paper propose the safety design of automatic train control system which is used for controlling and monitoring train speed not to excess a permitted speed. Safety activities are shown for the computerized system to achieve a required safety requirement. The safety activities are composed of system dynamic modelling to identify potential hazards contained in the target system, to analyze sub system faults to provoke the hazards. Risks analysis are carried out to estimate losses caused from the hazards to allocate safety requirement. We Proposed design solutions for sub system to meet safety requirement.

Development of Construction Process Safety Information System Using Analytic Hierarchy Process (AHP를 활용한 건설공정 안전평가 정보시스템 개발)

  • Kim Min-Jun;Jo Jung-Hyun;Jun Hyun-Jeong;Lee Byung Gee
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.05a
    • /
    • pp.39-44
    • /
    • 2005
  • Process control and autonomous safety control by applying PSM(Process Safety Management) method using AHP(Analytic Hierarchy Process) and to development of PSIM(Process Safety Information Management) evaluation method in the construction. The reason why PSIM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries, thereby strengthening their competitive edges.

  • PDF

A Study on the Setup Model of Safety Management Information System in the Construction Management (건설산업관리(CM)에서 안전관리정보시스템 구축 모델에 관한 연구)

  • 김영수;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.45-55
    • /
    • 2003
  • Construction Management(CM) system, which was introduced some years ago to large national construction projects, such as the construction of Incheon New Airport, construction of high-speed railroad and World Cup stadiums, is considered to be still in its early stage and safety at each step of CM is very poorly controlled. In an attempt to improve such inferior safety control of domestic CM, this study analyzed safety control operation system in CM home and abroad and suggested a model for the construction of safety control management information system suitable to the conditions of Korea.

College Students' Safety Behaviors in the Dental Technology Laboratory Predicted by the Theory of Planned Behavior (치기공전공 대학생의 실습실 안전 행동에 대한 계획된 행위 이론 검증)

  • Park, Jong-Hee
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.10 no.2
    • /
    • pp.15-27
    • /
    • 2009
  • Background and Goals: This study set out to apply the Theory of Planned Behavior (TPB), which is known to provide good explanations about human behavior, and test it to see if it could predict safety behavior by affecting the intention for safety behavior and perceived behavioral control and if intention for safety behavior would be influenced by attitude toward behavior, subjective norm, and perceived behavioral control. Methods: The subjects were 98 dental technology majors in D City. The questionnaires were distributed, filled out and collected on the spot. Each item was measured on a seven-point scale, and it's interpreted that the higher mean of each item would translate into safety behavior. Results: The analysis results of the Theory of Reasoned Action (TRA) variables indicate that only subjective norm ($\beta$ = .528, p < .000) had explanatory power of 27.2% (F = 37.170, P <.001) for intention for safety behavior. The results show that subjective norm and attitude toward behavior affect intention for safety behavior. The analysis results of the TPB variables revealed that intention for safety behavior had explanatory power of 26.6% (F = 36.072, p <.000) for behavior. When intention was added by perceived behavioral control, the explanatory power increased to 34.5% (F = 26.530, p <.000). And when it's added by knowledge, the explanatory power increased to 39.0% (F =21.661, p <.000). The results suggest that intention has the biggest influence on predicting safety behavior. Conclusion: The results show that the TPB model by Ajzen (1985) has greater forecasting power for intention and act of safety behavior than the TRA model by Fishbein & Ajzen (1980) and the TPB model can applied in the prediction of safety behavior. Thus safety behavior is considered as behavior whose determination control is limited. And safety education programs that add knowledge to the TPB variables will help the students promote their safety behavior.

  • PDF

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

Improvement and evaluation of flood control safety utilizing a flood risk map - Yeong-Seomjin River Basin - (홍수위험지도를 활용한 치수안전도 방법 개선 및 평가 - 영·섬진강 유역중심으로 -)

  • Eo, Gyu;Lee, Sung Hyun;Lim In Gyu;Lee, Gyu Won;Kim, Ji Sung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.21-33
    • /
    • 2024
  • Recently, the patterns of climate change-induced disasters have become more diverse and extensive. To develop an effective flood control plan, Korea has incorporated the concept of Potential Flood Damage (PFD) into the Long-Term Comprehensive Water Resources Plan to assess flood risk. However, concerns regarding the PFD have prompted numerous studies. Previous research primarily focused on modifying and augmenting the PFD index or introducing new indices. This study aims to enhance the existing flood control safety evaluation method by utilizing a flood risk map that incorporates risk indices, specifically focusing on the Yeong-Seomjin river basin. The study introduces three main evaluation approaches: risk and potential analysis, PFD and flood management level analysis, and flood control safety evaluation. The proposed improved evaluation method is expected to be instrumental in evaluating various flood control safety measures and formulating flood control plans.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.