• Title/Summary/Keyword: Safety components

Search Result 1,806, Processing Time 0.028 seconds

Safety Assurance of Dropper Clamp in Overhead Catenary System(I) (전차선로 드롭바 클램프 안전성 확보(I))

  • Lee, Ki-Won;Cho, Yong-Hyeon;Park, Young;Min, Byung-Il;Kwon, Sam-Young;Seok, Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.223-226
    • /
    • 2007
  • In the electrical railway, for the improvement of a train speed, it is necessary to study not only the dynamic behaviors of overhead catenary system but the fatigue behaviors of components for a safety assurance according to the increase of vibration level. One of the critical components in the system is a dropper. Therefore, the dynamic force acting on a dropper was measured in the Chungbuk Line and analyzed to figure out the dynamic characteristics the dropper. And in order to assure the safety of dropper clamp and cable, we proposed a test facility as well as test method based on the test results For the further study, we will measure the dynamic forces in the conventional line and high-speed line and make up the test condition, so that the safety of dropper clamps can be assured.

  • PDF

Test on the anchoring components of steel shear keys in precast shear walls

  • Shen, Shao-Dong;Pan, Peng;Li, Wen-Feng;Miao, Qi-Song;Gong, Run-Hua
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Prefabricated reinforced-concrete shear walls are used extensively in building structures because they are convenient to construct and environmentally sustainable. To make large walls easier to transport, they are divided into smaller segments and then assembled at the construction site using a variety of connection methods. The present paper proposes a precast shear wall assembled using steel shear keys, wherein the shear keys are fixed on the embedded steel plates of adjacent wall segments by combined plug and fillet welding. The anchoring strength of shear keys is known to affect the mechanical properties of the wall segments. Loading tests were therefore performed to observe the behavior of precast shear wall specimens with different anchoring components for shear keys. The specimen with insufficient strength of anchoring components was found to have reduced stiffness and lateral resistance. Conversely, an extremely high anchoring strength led to a short-column effect at the base of the wall segments and low deformation ability. Finally, for practical engineering purposes, a design approach involving the safety coefficient of anchoring components for steel shear keys is suggested.

Analysis of Thermal Characteristics for Components of Electrical Door System in Electric Multiple Unit (전동차 전기식 도어시스템의 구성부품에 대한 발열 특성분석)

  • Lee, Bon Hyung;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • This research conducted an the failure analysis was performed based on the failure and operation data for Seven years using the Reliability, Availability, Maintainability, and Safety(RAMS) constructed at the operation stage after the opening of the D urban railway. therefore, the risk priority was selected for failure frequency component within the door system that showed high failure. Finally, the goal was to suggest ways to improve the door system. For this purpose, the analysis of thermal characteristics of failed components such as Door Control Unit(DCU) in the door system based on the Seven-year failure analysis data of RAMS was performed. These results were applied to the main component exchange cycle of the door unit, the mean time between failure(MTBF) and mean kilometer between failure(MKBF) values of RAMS increased by 26% in 2017-2018 when the improvement measures were taken, and the MTBF value of DCU was 300,000 hours, which was a 57% improvement in reliability. The results of this thesis identify potential enhancements in reliability and improvements in maintenance of the door system that, if implemented, would contribute to train safety and reduce instances of failure in the future.

A Study on the Application of Operational Experience in the Stage of Aircraft System Design and Safety Assessment (항공기 시스템 설계와 안전성평가에 운영경험 반영 사례 연구)

  • Koo, Min-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2014
  • Airworthiness authorities specify the technical standards of airworthiness that propose minimum requirement of the commercial transport category and apply the rules in the certification process to ensure the safety of the aircraft. The Federal Aviation Administration and other national airworthiness authorities define the fatal accident risk levels for the safety assessment of the aircraft system and establish standard procedures to apply both qualitative and quantitative analysis techniques. However, an accident or incident may occur by the combination of various factors, although the aircraft is designed in accordance with the strict standards and approval by the Airworthiness Authorities. There are some key factors, such as human error, unpredictable complex system failures, degradation of the components reliability, improper maintenance task and intervals. Risk can be reduced by reflecting aircraft operational experience with similar types of aircraft in the process of aircraft development and safety assessment. Result of the root cause analysis for the Airbus A300-600 incident in which the aircraft engine reverser was deployed in the air have been introduced to reflect the design of system and related components. Also, this paper suggests to create a big-database in order to provide a feed-back to the FAR Part 25 transport category design and safety assessment of the operational experience.

Preliminary Round Robin Test(RRT) for Program for the Inspection of Nickel Alloy Components(PINC) - Reactor Vessel Head Penetration (RVHP) -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Song, Myung-Ho;Chung, Hae-Dong;Kim, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, the PINC project. USNRC required KINS to participate in the PINC project in May 2005. KINS organized the Korean consortium at March 2006 and Pre-RRT for RVHP were performed for the preparation of PINC RRT. Through these preliminary RRT, Korea NDE teams can learn and develop the detection and sizing technique for RVHP dissimilar metal weld. These techniques are now being prepared in Korea and need to be utilized for the In-service inspection of the RVHP and BMI of Korea Nuclear Power Plants. PINC RRT mock-ups will be helpful to training.

AN INTEGRATED APPROACH TO RISK-BASED POST-CLOSURE SAFETY EVALUATION OF COMPLEX RADIATION EXPOSURE SITUATIONS IN RADIOACTIVE WASTE DISPOSAL

  • Seo, Eun-Jin;Jeong, Chan-Woo;Sato, Seichi
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Embodying the safety of radioactive waste disposal requires the relevant safety criteria and the corresponding stylized methods to demonstrate its compliance with the criteria. This paper proposes a conceptual model of risk-based safety evaluation for integrating complex potential radiation exposure situations in radioactive waste disposal. For demonstrating compliance with a risk constraint, the approach deals with important exposure scenarios from the viewpoint of the receptor to estimate the resulting risk. For respective exposure situations, it considers the occurrence probabilities of the relevant exposure scenarios as their probability of giving rise to doses to estimate the total risk to a representative person by aggregating the respective risks. In this model, an exposure scenario is simply constructed with three components:radionuclide release, radionuclide migration and environment contamination, and interaction between the contaminated media and the receptor. A set of exposure scenarios and the representative person are established from reasonable combinations of the components, based on a balance of their occurrence probabilities and the consequences. In addition, the probability of an exposure scenario is estimated on the assumption that the initiating external factors influence release mechanisms and transport pathways, and its effect on the interaction between the environment and the receptor may be covered in terms of the representative person. This integrated approach enables a systematic risk assessment for complex exposure situations of radioactive waste disposal and facilitates the evaluation of compliance with risk constraints.

Sensitivity analysis of failure correlation between structures, systems, and components on system risk

  • Seunghyun Eem ;Shinyoung Kwag ;In-Kil Choi ;Daegi Hahm
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.981-988
    • /
    • 2023
  • A seismic event caused an accident at the Fukushima Nuclear Power Plant, which further resulted in simultaneous accidents at several units. Consequently, this incident has aroused great interest in the safety of nuclear power plants worldwide. A reasonable safety evaluation of such an external event should appropriately consider the correlation between SSCs (structures, systems, and components) and the probability of failure. However, a probabilistic safety assessment in current nuclear industries is performed conservatively, assuming that the failure correlation between SSCs is independent or completely dependent. This is an extreme assumption; a reasonable risk can be calculated, or risk-based decision-making can be conducted only when the appropriate failure correlation between SSCs is considered. Thus, this study analyzed the effect of the failure correlation of SSCs on the safety of the system to realize rational safety assessment and decision-making. Consequently, the impact on the system differs according to the size of the failure probability of the SSCs and the AND and OR conditions.

The Impact of the Safety Awareness & Performance by the Intelligent Image Analysis System (지능형 영상분석 시스템이 작업자 안전의식 및 행동에 미치는 영향)

  • Jang, Hyun Song
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.143-148
    • /
    • 2015
  • The study examined the relationship between workers' safety awareness, safety performance and the components of the intelligent image analysis system in accordance with preventing the workers from safety hazard in dangerous working area. Based on the safety performance model, we include safety knowledge, safety motivation, safety compliance and safety participation, and we also define three additional factors of the intelligent image analysis system such as functional feature, penalty and incentive by using factor analysis. SEM(Structural Equation Modeling) analyses on the data from the total of 73 workers showed that functional feature of intelligent analysis system and incentive were positively related to safety knowledge and safety motivation. And mediation effects of the relationship were verified to safety compliance and safety participation through safety knowledge as well.

Safety Analysis and Design Model for a Complex System like ATM(Air Traffic Management) System (ATM(Air Traffic Management) 시스템과 같은 복잡 시스템의 안전 분석 및 설계 모델)

  • Park, Joong-Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • A complex system like ATM(Air Traffic Management) has safety problem emerging from complex interactions between systems. In complex systems, malfunctions of components are not the only causes of critical accidents. To resolve this problem many researchers have proposed new safety analysis models for complex systems. This research is a way of improving safety analysis model focusing on systems engineering design model for ATM.

  • PDF

A Study on Production Planning with Reliable Satisfaction for Due Date(Focused on a Automobile Components Manufacturer) (납기 신뢰성 확보를 위한 생산계획 수립에 관한 연구(자동차 부품업체 중심으로))

  • Choi, Yoon-Jeong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.139-147
    • /
    • 2006
  • In case of domestic automobile manufacturers introducing and running a make-to-order production system, JIT system is to provide a necessary number of components at a right place in time which is a specific supply chain management, is different from other occupations. This study is for establishing a efficient production planning and finding a management method to correspond with a manufacturing system and diversified supply chain management and building an information system to support it. For this, we analyze the relevant business process and utilize various informations occur in supply chain of domestic automobile components manufacturer. It will contribute to not only reliability improvement of production management system but also satisfaction for due date of products.