• Title/Summary/Keyword: Safety Structure

Search Result 4,468, Processing Time 0.033 seconds

Development of Individual Temporary Equipment Material/Quality/Delivery Management Standards(Guide) for Temporary Equipment Rental Company (가설기자재 임대업체를 위한 개별 가설기자재 자재/품질/납품관리 기준(Guide) 개발)

  • Lee, Junho;Kim, Junsang;Yoou, Geonhee;Cho, Sehyun;Kim, JungYeol;Kim, Youngsuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.62-72
    • /
    • 2024
  • Due to the distribution structure of domestic temporary equipment, quality control of temporary equipment is essential because more than 80% of temporary equipment is repeated and reused. Due to this importance, the Ministry of Land, Infrastructure and Transport has proposed quality management standards for temporary equipment for 10types of temporary equipments, including steel pipe support, but the overall quality of temporary eqipment cannot be confirmed because the quality is managed through sampling quality tests. In addition, although quality control standards exist for temporary material rental company, practical utilization was investigated and analyzed to be very low as they are mainly presented based on qualitative inspection standards by visual inspection. Therefore, the purpose of this study is to develop individual temporary material/quality/delivery management standards (Guides) for temporary equipment rental company to preemptively secure the quality of temporary equipment before bringing them into the construction site. If the standards developed through this study are applied to domestic temporary equipment rental companies, it is expected that high-quality temporary equipment with secured quality will be brought into the construction site as the quality of temporary equipment quality of domestic medium and small temporary equipment rental companies is improved safety accidents related to temporary structures.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride (염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성)

  • Taehyoung Kim;Sung-Ho Jin;Jongwook Park;Yeong-Soon Gal
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.296-302
    • /
    • 2024
  • An ionic conjugated polymer-iron (III) chloride composite was prepared via in-situ quaternization polymerization of 2-ethynylpyridine (2EP) using iron (III) chloride. Various instrumental methods revealed that the chemical structure of the resulting conjugated polymer (P2EP)-iron (III) chloride composite has the conjugated backbone system having the designed pyridinium ferric chloride complexes. The polymerization mechanism was assumed to be that the activated triple bond of 2-ethynylpyridinium salt, formed at the first reaction step, is easily susceptible to the step-wise polymerization, followed by the same propagation step that contains the propagating macroanion and monomeric 2-ethynylpyridinium salts. The electro-optical and electrochemical properties of the P2EP-FeCl3 composite were studied. In the UV-visible spectra of P2EP-FeCl3 composite, the absorption maximum values were 480 nm and 533 nm, and the PL maximum value was 598 nm. The cyclic voltammograms of the P2EP-FeCl3 composite exhibited irreversible electrochemical behavior between the oxidation and reduction peaks. The kinetics of the redox process of composites were found to be very close to a diffusion-controlled process from the plot of the oxidation current density versus the scan rate.

Development of Single-span Plastic Greenhouses for Hot Pepper Rainproof Cultivation (고추 비가림재배용 단동 비닐하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.371-377
    • /
    • 2013
  • The government has been carrying out a project for supporting the rain shelter for hot pepper as part of measures stabilizing the demand and supply of hot pepper since 2012. However, the eaves height of single-span plastic greenhouses extensively used in farms is low, which are inappropriate for the rainproof cultivation of hot pepper. This study attempted to develop single-span plastic greenhouses which are structurally safe and have the dimensions suitable for the rainproof cultivation of hot pepper as well. The structure status of plastic greenhouses and restructuring wishes of 56 rainproof cultivation farms nationwide were investigated to set up the width and height of the plastic greenhouses. 53% of the plastic greenhouses currently in operation had a width of under 7 m and 64% of their eaves had a height of 1.5 m or less, which accounted for the highest rate. Mostly the width of 7.0 m was desired for the greenhouses and the height of 2.0 m for their eaves, so these values were chosen as the dimensions for the singlespan plastic greenhouses. After an analysis of their structural safety while changing the specifications of the rafter pipe in various ways, 5 kinds of models were suggested considering the frame ratio and installation costs. The 12-Pepper-1 model is a developed single-span plastic greenhouse for hot pepper in which a ${\emptyset}42.2{\times}2.1t$ rafter pipe is installed at an interval of 90cm and the models of 12-Pepper-2 through 5 are the other developed ones in which a ${\emptyset}31.8{\times}1.5t$ rafter pipe is installed at intervals of 60 cm, 70 cm, 80 cm and 90 cm, respectively. As a result of an analysis of economic feasibility of 12-Pepper-2 compared to 10-Single-3 in the notification of the Ministry for Food, Agriculture, Forestry and Fisheries, it turned out that there would be an increase in profits by about 1.2 million won based on one building of a greenhouse sized 672 $m^2$.

EFFECT OF 10% CARBAMIDE PEROXIDE ON DENTIN (상아질에 대한 10% Carbamide peroxide가 미치는 영향)

  • Seo, Sang-Woo;Kown, Yong-Hoon;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Kyo-Han;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2003
  • The teeth bleaching with bleaching agent is widely used at recent times. Until yet the exact mechanism of the bleaching agent isn't known but it is thought that is by the complex reduction-oxidation reaction of the decomposed free radical from bleaching agent through various ways. In other words, it is supposed that the teeth are whitened by agent's changing chemical structures of stain-causing materials. The purpose of this study is to exam the change of the dentinal character by bleaching agent and to evaluate the safety of this agent. For this study, after applying 10% carbamide peroxide to enamel of human premolar for 6 hours a day for 2 weeks we examined changes of surface morphology, microhardness, composition and contents of minirals in human dentin using SEM, microhardness tester, FT-Raman spectrometer and EPMA and got following results. There was no significant difference in surface morphologic change when we examined the effect of 10% carbamide peroxide which penetrated into dentin after applied on enamel surface comparing with result from specimen in distilled water No change was shown on the surface of peritubular and intertubular dentin within the nanometeric range. The microhardness between bleached teeth and teeth stored in distilled water showed no statistically significant difference FT-Raman spectra of dentin exhibited no change of the component in human dentin. Only the least change in peaks of organic and inorganic materials were detected in Raman intencity. The total content of mineral elements in dentin with no treatment, stored only in distilled water and stored in distilled water after bleaching were $98.73{\pm}1.89,\;98.56{\pm}2.11\;and\;97.47{\pm}2.51$ respectively. Also they showed no statistically significant difference. From above results, the effect of 10% carbamide peroxide bleaching on structure of dentin is very low and the results may confirm the safety of this bleaching agent.

  • PDF

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam (전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질)

  • Choi, Yong-Jin;Lee, Sung-Won;Seo, Bong-Kuk;Kim, Min
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).

Community Structure and Distribution of Natural Seaweed Beds on the Eastern Coast of Korea (동해안 천연 해조장의 군집구조와 분포 특성)

  • Park, Gyu Jin;Ju, Hyun;Choi, Ok In;Choi, Chang Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2017
  • Natural seaweed beds and habitat environments were investigated using quantitative and qualitative methods from May to December 2015 at 3 sites in Gangneung, Uljin, and Busan along the eastern coast of Korea. In total, 9 green, 23 brown, and 64 red algal taxa were identified. The biomass of the seaweed at Gangneung was 173.2 to $613.8wet\;wt.g/m^2$ of Dictyota divaricata, 360.8 to $520.4wet\;wt.g/m^2$ of Symphyocladia linearis, and 25.9 to $470.8wet\;wt.g/m^2$ of Undaria pinnatifida. At Uljin, these numbers were 5.5 to $256.2wet\;wt.g/m^2$ of Plocamium telfarirae and 46.8 to $241.5wet\;wt.g/m^2$ of Agarum clathratum. The biomass of Sargassum coreanum and Ecklonia cava were 388.1 to $6,972.4wet\;wt.g/m^2$ and 194.9 to $958.5wet\;wt.g/m^2$, respectively, at Busan. S. coreanum and E. cava showed higher biomass compared to other seaweed at Busan. The biomass rate represented an average of 19.2 percent of the total population, ranging from 0.0 to 55.5 percent in Gangneung. In Uljin, the average was calculated as 63.8 percent, and this figure was 48.5 percent in Busan. The percentage of barren ground averaged 46.7 percent in Gangneung and 91.1 percent in Uljin. Uljin showed the highest percentage of barren ground compared to other regions. Sea urchin density appeared to be $6.0ind./m^2$ in Gangneung, $7.0ind./m^2$ in Uljin, and $2.0ind./m^2$ in Busan, with the lowest sea urchin density being that of Busan. In conclusion, the composition of species, appearance ratio, and abundance of vegetation found were similar to previous studies, but it is thought that continuous monitoring is needed due to concerns about physical and chemical pollution caused by global warming, climate change, and coastal development.