• Title/Summary/Keyword: Safety State

Search Result 2,704, Processing Time 0.027 seconds

Spark Plasma Sintering Technique and Application for All-Solid-State Batteries (전고상 전지를 위한 스파크 플라스마 소결 기술과 응용)

  • Lee, Seokhee
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.170-181
    • /
    • 2019
  • All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.

Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries (이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Fault Detection in Automatic Identification System Data for Vessel Location Tracking

  • Da Bin Jeong;Hyun-Taek Choi;Nak Yong Ko
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.257-269
    • /
    • 2023
  • This paper presents a method for detecting faults in data obtained from the Automatic Identification System (AIS) of surface vessels. The data include latitude, longitude, Speed Over Ground (SOG), and Course Over Ground (COG). We derive two methods that utilize two models: a constant state model and a derivative augmented model. The constant state model incorporates noise variables to account for state changes, while the derivative augmented model employs explicit variables such as first or second derivatives, to model dynamic changes in state. Generally, the derivative augmented model detects faults more promptly than the constant state model, although it is vulnerable to potentially overlooking faults. The effectiveness of this method is validated using AIS data collected at a harbor. The results demonstrate that the proposed approach can automatically detect faults in AIS data, thus offering partial assistance for enhancing navigation safety.

Development of Remote Supervision System for Guam Lamps by Way of Leakage Current(Igr) Detection Method (보안등 전거설비의 Igr 누설전류 검출 및 원격감시장치 개발)

  • Choi, Myeong-Il;Kim, Young-Seok;Kim, Chong-Min;Bang, Sun-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.75-80
    • /
    • 2010
  • The present study presented the implementation of a remote control/supervision system for guard lamps used in public illumination with little endeavor by far for safe management, which makes possible to supervise the state and to control the functions remotely including electric safety elements. Especially, the developed system adopts the measurement algorithm for detecting resistive leakage current(Igr) flowing based on the phase difference checkable for sensing at a monitor, being allowable for monitoring at MMI and transmitter for data transmittance. To verify reliability about the algorithm to accurately detect Igr leakage current, the laboratory-based functional test was performed.

A Study on the ICAO international aviation safety policy, a change of paradigm and the government response to the direction (ICAO 국제항공안전정책 패러다임의 변화 분석과 우리나라 신국제항공안전정책 검토)

  • Chang, Man-Heui;Hwang, Ho-Won
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.1
    • /
    • pp.73-96
    • /
    • 2013
  • ICAO's Universal Safety Oversight Audit Programme (USOAP) was initially launched in January 1995, in response to widespread concerns about the adequacy of aviation safety oversight around the world. The recent reduction in aircraft accidents and effective role that is evaluated on the basis of these results, and in 2013 the existing 'snapshot approach' to 'regular monitoring system (USOAP-Continuous Monitoring Approach)' was converted to. ICAO aviation safety assessment of the state in today's international community 'aviation safety credibility' as objective indicators to judge the enormous impact on the aviation industry, the state is not satisfactory, especially if the results of the evaluation and expansion of code-share airline ban, reduced international air transit passengers, including premium increases business and economic penalties should. In addition, ICAO implementation of the existing laws and regulations(Prescriptive Approach), but based on the Risk-based prevention model, Proactive Approach introduced the concept of aviation safety system, including international aviation safety policy has been to switch paradigms. This new ICAO international aviation safety policy also applies to the Government of the Republic of Korea in line with the aviation safey policies have changed. In particular, the systematic implementation of safety management for the existing laws and regulations in the center of the safety oversight system of risk-based introduction of the concept of proactive safety management, and According to international standards ICAO aviation service providers operate their own Safety Management System was set out in Aviation Law ever. In addition, the aviation safety is at the center of the field of the safety of aircraft operations and maintenance for the promotion is promoting various safety policies. This new paradigm shift in the international aviation safety policy in line with our state in the international community with the most exemplary aviation safety system firmly established itself as a model, the Government will strengthen the competitiveness of our aviation plans to support. To do this, the government, airlines, aviation officials try all the practical effect would be expected.

  • PDF

A stress model reflecting the effect of the friction angle on rockbursts in coal mines

  • Fan, Jinyang;Chen, Jie;Jiang, Deyi;Wu, Jianxun;Shu, Cai;Liu, Wei
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.

The Quality Control Program for Industrial Hygiene Laboratories in Korea

  • Park, Hae Dong;Chung, Eun Kyo;Kim, Kiwoong
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.322-326
    • /
    • 2017
  • In 1992, the quality control program was introduced in Republic of Korea to improve the reliability of the work environment monitoring, which was introduced in the 1980s. The commission entrusted by the Ministry of Employment and Labor, the Occupational Safety and Health Research Institute has conducted the program for industrial hygiene laboratories including designated monitoring institutions and spontaneously participating agencies. The number of institutions that participated in the program has increased from 30 to 161. The initial conformance ratio in the participants was 43% (organic solvents) and 52% (metals). Thereafter, the conformance ratio increased rapidly and it has remained in a stable state at more than 89% since 1996. As subject materials, 13 kinds of organic solvents and 7 kinds of metals were used. To improve the capability of measurement and analysis of private institutions, educational courses were conducted annually. An assessment at the actual sites of participants was additionally introduced into the program in 2013. Thus, the program turned into a system that administrates the overall process of participants. For the future, the scope of target materials will be extended through additional items. Thus, the reliability of the results of the work environment monitoring is expected to increase accordingly.

Using Immersive Augmented Reality to Assess the Effectiveness of Construction Safety Training

  • Kim, Kyungki;Alshair, Mohammed;Holtkamp, Brian;Yun, Chang;Khalafi, SeyedAmirhesam;Song, Lingguang;Suh, Min Jae
    • Journal of Construction Engineering and Project Management
    • /
    • v.9 no.4
    • /
    • pp.16-33
    • /
    • 2019
  • The increasing size and complexity of modern construction projects demands mature capabilities of onsite personnel with regard to recognizing unsafe situations. Construction safety training is paper or computer-based and suffers from a distinct gap between the classroom training environment and real-world construction sites; even trained personnel can find it difficult to recognize many of the potential safety hazards at their jobsites even after receiving construction safety training. Immersive technologies can overcome the current limitations in construction safety training by reducing the gap between the classroom and a real construction environment. This research developed and tested a new Augmented Reality (AR)-based assessment tool to evaluate the hazard recognition skills of students majoring in construction management as part of a construction safety course. The quantitative and qualitative results of this research confirmed that AR-based assessment can become a very effective assessment tool to evaluate safety knowledge and skills in a construction safety course, outperforming both paper and computer-based assessment methods. The students preferred AR-based assessment because it provides a realistic visual context for real world safety hazards.

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.