• Title/Summary/Keyword: Safety Mechanism

Search Result 1,261, Processing Time 0.036 seconds

Examination of the Cause of Damage to Capacitors for Home Appliances and Analysis of the Heat Generation Mechanism (가전용 커패시터의 소손원인 규명 및 발열 메커니즘 해석)

  • Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.13-19
    • /
    • 2011
  • The purpose of this study is to examine the cause of damage to electrolytic capacitors and to present the heat generation mechanism in order to prevent the occurrence of similar problems. From the analysis results of electrolytic capacitors collected from accident sites, the fire causing area can be limited to the primary power supply for the initial accident. From the tests performed by applying overvoltage, surge, etc., it is thought that the fuse, varistor, etc., are not directly related to the accidents that occurred. The analysis of the characteristics using a switching regulator showed that the charge and discharge characteristics fell short of standard values. In addition, it is thought that heated electrolytic capacitors caused thermal stress to nearby resistances, elements, etc. It can be seen that the heat generation is governed by the over-ripple current, application of AC overvoltage, surge input, internal temperature increase, defective airtightness, etc. Therefore, when designing an electrolytic capacitor, it is necessary to comprehensively consider the correct polarity arrangement, appropriate voltage application, correct connection of equivalent series resistance(ESR) and equivalent series inductance(SEL), rapid charge and discharge control, sufficient margin of dielectric tangent, etc.

Implementation of Methodology & Tool for Communication Safety Guarantee in Railway System (철도시스템 통신 안전성 확보를 위한 방법 제시 및 도구 구현)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Kim, Yong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • Safety-critical systems related to the railway communications are currently undergoing changes. Mechanical and electro-mechanical devices are being replaced by programmable electronics that are often controlled remotely via communication networks. Therefore designers and operators now not only have to contend with component failures and user errors, but also with the possibility that malicious entities are seeking to disrupt the services provided by theirs systems. Recognizing the safety-critical nature of the types of communications required in train control operations, the communications infrastructure will be required to meet a number of safety requirements such as system faults, user errors and the robustness in the presence of malicious attackers who are willing to take determined action to interfere in the correct operation of a system. In this paper, we proposed the safety strategies employed in the railway communications and a security mechanism for Korean railway communication system. Also, we presented the developed means for validation and determination of communication safety based on the proposed security mechanism in the railway system.

A Framework for Control of Safety Budget-Industrial Accidents Relationship

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.23-26
    • /
    • 2008
  • This study focuses on the issue of control performance of safety budget for preventing and reducing industrial accidents in Korea. The effect of safety budget such as industrial accident prevention fund on the safety performance is statistically examined first. The role and control performance of industrial accident prevention fund is particularly addressed to reduce the related accidents. The effectiveness of the industrial accident prevention fund-industrial accident relationship is then explained with a simple PI control mechanism.

Investigation of LN2 Lubrication Effect in Cryogenic Machining -Part 3: Nitrogen Lubrication Mechanism related to Chip Microstructures- (초 냉각 가공에서의 LN2 의 감찰 효과 연구 -절삭 칩 미세 구조에 관한 나이트로젠 감찰-)

  • 전성찬;정우철
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.221-225
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. This paper presents lubrication mechanism related to chip microstructure. The friction reduction was further reflected In larger shear angle and less secondary deformation in the chip microstructures.

  • PDF

CAD System Development for Geometric Design and Motion Analysis of Tangential Cam (접선 캠의 형상설계 및 운동해석을 위한 CAD시스템 개발)

  • 조성철;송정섭
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.42-46
    • /
    • 1995
  • To purpose of this study is to model design and motion analysis of tangential cam mechanism using personal computer system. The CAD(Computer Aided Design) system used in this study was constructed with CPU(Central Processing Unit) 80486, RAM(Random Access Memory) 8M, CGA graphic card. By using developed program for tangential cam mechanism, we designed tangential cam models and analysed displacement, velocity, acceleration of follower.

  • PDF

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus Malassezia restricta

  • Do, Eunsoo;Lee, Hyun Gee;Park, Minji;Cho, Yong-Joon;Kim, Dong Hyeun;Park, Se-Ho;Eun, Daekyung;Park, Taehun;An, Susun;Jung, Won Hee
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.242-249
    • /
    • 2019
  • Betaine derivatives are considered major ingredients of shampoos and are commonly used as antistatic and viscosity-increasing agents. Several studies have also suggested that betaine derivatives can be used as antimicrobial agents. However, the antifungal activity and mechanism of action of betaine derivatives have not yet been fully understood. In this study, we investigated the antifungal activity of six betaine derivatives against Malassezia restricta, which is the most frequently isolated fungus from the human skin and is implicated in the development of dandruff. We found that, among the six betaine derivatives, lauryl betaine showed the most potent antifungal activity. The mechanism of action of lauryl betaine was studied mainly using another phylogenetically close model fungal organism, Cryptococcus neoformans, because of a lack of available genetic manipulation and functional genomics tools for M. restricta. Our genome-wide reverse genetic screening method using the C. neoformans gene deletion mutant library showed that the mutants with mutations in genes for cell membrane synthesis and integrity, particularly ergosterol synthesis, are highly sensitive to lauryl betaine. Furthermore, transcriptome changes in both C. neoformans and M. restricta cells grown in the presence of lauryl betaine were analyzed and the results indicated that the compound mainly affected cell membrane synthesis, particularly ergosterol synthesis. Overall, our data demonstrated that lauryl betaine influences ergosterol synthesis in C. neoformans and that the compound exerts a similar mechanism of action on M. restricta.

A Study on Communication Safety and Evaluation Tool in Railway Communication System (열차제어시스템 통신 안정성 및 평가 도구 연구)

  • Kim, Sung-Un;Seo, Sang-Bo;Song, Seung-Mi;Jo, Chan-Hyo;Hwang, Jong-Gyu;Jo, Hyun-Jeong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.343-352
    • /
    • 2008
  • Safety-critical systems related to the railway communications are currently undergoing changes. Mechanical and electro-mechanical devices are being replaced by programmable electronics that are often controlled remotely via communication networks. Therefore designers and operators now not only have to contend with component failures and user errors, but also with the possibility that malicious entities are seeking to disrupt the services provided by theirs systems. Recognizing the safety-critical nature of the types of communications required in rail control operations, the communications infrastructure will be required to meet a number of safety requirements such as system faults, user errors and the robustness in the presence of malicious attackers who are willing to take determined action to interfere in the correct operation of a system. This paper discusses the safety strategies employed in the railway communications and proposes a security mechanism for Korean railway communication system. We present the developed communication safety evaluation tool based on the proposed security mechanism and also evaluate its protecting capability against the threats of masquerading, eavesdropping, and unauthorized message manipulation.

  • PDF