• Title/Summary/Keyword: Safety Margin

Search Result 500, Processing Time 0.02 seconds

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Heung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The satellite system experiences severe mechanical loads during the launch period. Therefore, the positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading conditions during the launch period. This paper presents modal and stress analysis results due to quasi-static loads for the satellite antenna system. The failure tendency fur the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

Computation of Theoretical Maximum Daily Intake and Safety Index of Pesticides by Korean Population (한국인에 의한 농약의 이론적 최대섭취량 및 안전지표의 산정)

  • Lee, Su-Rae;Lee, Mi-Gyung;Kim, Nam-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.618-624
    • /
    • 1995
  • In order to evaluate the acceptability of Korea and Codex maximum residue limits (MRLs), theoretical maximum daily intake (TMDI) by Korean population was calculated from MRL and food factor and compared with acceptable daily intake (ADI). The percent ratio of TMDI to ADI for 105 pesticides whose MRL was established in Korea was mostly below 80% and 13 pesticides exceeded the ADI. Among 82 pesticides with Codex MRL, 20 items exceeded the ADI. The main causes of exceeding the ADI according to Korea or Codex MRLs were pointed out for 22 items and it was needed to set measures to assure a safety margin.

  • PDF

Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid

  • Saadati, Hassan;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.639-647
    • /
    • 2018
  • In this study, the effects of selecting water/silver nanofluid as both a coolant and a reactivity controller during the first operating cycle of a light water nuclear reactor are investigated. To achieve this, coupled neutronic-thermo-hydraulic analysis is employed to simulate the reactor core. A detailed VVER1000/446 reactor core is modeled in monte carlo code (MCNP), and the model is verified using the porous media approach. Results show that the maximum required level of silver nanoparticles is 1.3 Vol.% at the beginning of the cycle; this value drops to zero at the end of cycle. Due to substitution of water/boric acid with water/Ag nanofluid, reactor operation time at maximum power extends to 357.3 days, and the energy generation increases by about 27.3%. The higher negative coolant temperature coefficient of reactivity in the presence of nanofluid in comparison with the water/boric acid indicates that the reactor is inherently safer. Considering the safety margins in the presence of the nanofluid, minimum departure from nucleate boiling ratio is calculated to be 2.16 (recommendation is 1.75).

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.

A Need of Management of Horizontal Alignment Design at Rural Roads (지방부 도로에서 평면선형 설계관리의 필요성)

  • Kim, Yong-Seok;Cho, Won-Bum
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.25-31
    • /
    • 2010
  • Road design guideline provides the directions on how to design a road alignment based on design speed, and this guideline has a design expectation in that design speed is supposed to be equal to the operating speed of drivers. Horizontal curve design is also based on design speed, and minimum radius is derived based on the drivers comfort while negotiating the curve. However, side friction reflecting drivers comfort is lower than a physical friction measured on wet road surface, therefore, it is reasonable to regard the criterion on minimum radius has a safety margin. Futhermore, the practical preference of choosing the larger radius than minimum leads to a noticeable gap between design speed and operating speed, so links to the violation of design expectation implicated in the guideline. In order to review this assumption, friction and operating speed at rural roads was measured and observed. As the results, a safety margin brought out by the gap between comfort-based friction and measured friction is qualitatively derived. Also, the gap between design speed and operating speed presumably caused by the safety margin and practical preference is analysed. By this, it is suggested that current design guideline should provides not only the minimum radius but also the management of road alignment design to minimize the gap between the design speed and operating speed.

Review and Proposal for Seismic Safety Assessment of Nuclear Power Plants against Beyond Design Basis Earthquake (설계초과 지진에 대한 원전 지진안전성 평가기술 고찰 및 제언)

  • Choi, In-Kil
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • After Kyeongju earthquake occurred in September 12, 2016, the seismic safety of nuclear power plants became important issue in our country. The seismic safety of nuclear power plant against beyond design basis earthquake became very important to secure the public safety. In this paper, the current status of the seismic safety assessment methodology is reviewed and some aspects for the reliability improvement of the seismic safety assessment results are proposed. Seismic margin analysis and probabilistic seismic safety assessment have been used for the seismic safety evaluation of a nuclear power pant. The basic procedure and the related issues and proposals for the probabilistic seismic safety assessment are investigated.

FAST (floating absorber for safety at transient) for the improved safety of sodium-cooled burner fast reactors

  • Kim, Chihyung;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1747-1755
    • /
    • 2021
  • This paper presents floating absorber for safety at transient (FAST) which is a passive safety device for sodium-cooled fast reactors with a positive coolant temperature coefficient. Working principle of the FAST makes it possible to insert negative reactivity passively in case of temperature rise or voiding of coolant. Behaviors of the FAST in conventional oxide fuel-loaded and metallic fuel-loaded SFRs are investigated assuming anticipated transients without scram (ATWS) scenarios. Unprotected loss of flow (ULOF), unprotected loss of heat sink (ULOHS), unprotected transient overpower (UTOP) and unprotected chilled inlet temperature (UCIT) scenarios are simulated at end of life (EOL) conditions of the oxide and the metallic SFR cores, and performance of the FAST to improve the reactor safety is analyzed in terms of reactivity feedback components, reactor power and maximum temperatures of fuel and coolant. It is shown that FAST is able to improve the safety margin of conventional burner-type SFRs during ULOF, ULOHS, UTOP and UCIT.

Clinical Significance of Tumor Infiltration at the Resection Margin in Gastric Cancer Surgery (위암 수술 시 절제연 암침윤의 임상적 의미)

  • Kwon, Sung-Joon
    • Journal of Gastric Cancer
    • /
    • v.1 no.1
    • /
    • pp.24-31
    • /
    • 2001
  • Purpose: Despite knowledge of the adverse effects of resection-line disease, surgeons continue to perform inadequate resections. This demonstrates the need for a more aggressive approach to assessment of resection margins at operation. Materials and Methods: Seven hundred fifteen gastric cancer patients who were operated on at our hospital from 1992 to 1998 were included in this analysis. Various clinicopathological factors, including resection-line involvement, were ascertained from the surgical and histopathological records. Results: Of the 715 evaluable patients, 27 patients ($3.8\%$) had involvement of one or both resection lines; in 10 patients the proximal resection line only, in 16 the distal resection line only, and 1 both resection lines were involved. Presence of resection-line involvement was significantly associated with T3 and T4 stage, N (+) stage, M (+) stage, type of operation (total gastrectomy), tumor location (entire stomach), size$\geq$11 cm), and gross type of tumor (Borrmann 4 type). When performing a distal subtotal gastrectomy, no involvement was found when the cranial and caudal distances between the lesion and the line of transection was equal to or greater than 2 cm and 3 cm, respectively, for early cancer and 7 cm and 3 cm, respectively, for advanced cancer. When performing a total gastrectomy for upper 1/3 or middle 1/3 gastric cancer, no involvement was found when the cranial distances between the lesion and the line of transection were equal to or greater than 3 cm and 4 cm, respectively, without distinction of the presence of serosal invasion. Conclusions: The difference in survival between positive and negative margin patients is limited to the group of patients with curative surgery. An important principle of treatment is that the entire tumor must be removed with a 3 cm distal margin and a 2- to 7 cm margin depending on the location and the depth of wall invasion of the tumor, to provide histologically negative margins.

  • PDF

Link Margin Analysis on Telemetry for KSLV-I Launch (KSLV-1 발사를 위한 원격측정신호 Link Margin 분석)

  • Oh, Chang-Yul;Lee, Sung-Hee;Kim, Dong-Hyun;Kwon, Sun-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • Telemetry data is very important for the Launch Mission and Flight Safety Control during the Space Launch. In Naro Space Center, several telemetry stations such as a small station in the NARO space center, two stations in Jeju and a downrange station on a ship are deployed for the stable acquisition/receiving of the telemetry signals. In this paper, the Link Margin and Reliability for the telemetry are analyzed to evaluate the probability of the signal receiving of each station. Even though the proper analysis is to using the on-board EIRP(Effective Isotropic Radiation Power) values in the direction of the ground station considering the predicted flight trajectory and the locations of the stations, the global EIRP of 95% spatial coverage has been used for the analysis, due to the limitation of the available data.

  • PDF