• Title/Summary/Keyword: Safety Integrity

Search Result 797, Processing Time 0.024 seconds

The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside (해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, Yong-Hee;Choi, Jae-Woong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • As a gas explosion is the most fatal accident in shipbuilding and offshore plant industries, all safety critical elements on the topside of offshore platforms should retain their integrity against blast pressure. Even though many efforts have been devoted to develop blast-resistant design methods in the offshore engineering field, there still remain several issues needed to be carefully investigated. From a procedure for calculation of explosion design pressure, impulse of a design pressure model having completely positive side only is determined by the absolute area of each obtained transient pressure response through the CFD analysis. The negative pressure phase in a general gas explosion, however, is often quite considerable unlike gaseous detonation or TNT explosion. The main objective of this study is to thoroughly examine the effect of the negative pressure phase on structural behavior. A blast wall for specific FPSO topside is selected to analyze structural response under the blast pressure. Because the blast wall is considered an essential structure for blast-resistant design. Pressure time history data were obtained by explosion simulations using FLACS, and the nonlinear transient finite element analyses were performed using LS-DYNA.

Tension Estimation for Hanger Cables on a Suspension Bridge Using Image Signals (영상신호를 이용한 현수교 행어케이블의 장력 추정)

  • Kim, Sung-Wan;Yun, Da-Woon;Park, Si-Hyun;Kong, Min-Joon;Park, Jae-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • In suspension bridges, hanger cables are the main load-supporting members. The tension of the hanger cables of a suspension bridge is a very important parameter for assessing the integrity and safety of the bridge. In general, indirect methods are used to measure the tension of the hanger cables of a suspension bridge in traffic use. A representative indirect method is the vibration method, which extracts modal frequencies from the cables' responses and then measures the cable tension using the cables' geometric conditions and the modal frequencies. In this study, the image processing technique is applied to facilitate the estimation of the dynamic responses of the cables using the image signal, for which a portable digital camcorder was used due to its convenience and cost-efficiency. Ambient vibration tests were conducted on a suspension bridge in traffic use to verify the validity of the back analysis method, which can estimate the tension of remote hanger cables using the modal frequencies as a parameter. In addition, the tension estimated through back analysis method, which was conducted to minimize the difference between the modal frequencies calculated using finite element analysis of the hanger cables and the measured modal frequencies, was compared with that measured using the vibration method.

A Study on Health Education Hours and Contents of the 6th Grade Primary School Curriculum (제 6차 초등학교 교육과정의 보건교육 시간 수 및 내용의 분석)

  • Yoo, Jae-Soon
    • Journal of the Korean Society of School Health
    • /
    • v.13 no.1
    • /
    • pp.63-84
    • /
    • 2000
  • Primary school is regarded as an important period when many health-related behaviors and life-styles begin to be formed. Acquiring them through school heath education has a strong influence on the health promotion of not only the family but also the community. Primary school health education in Korea has a systematic flaw in that health-related subjects are divided and taught under various subjects in primary school. In order to develop a proper school health curriculum, it is essential to assess what is currently being taught. In this study the current health education of the 6th grade primary curriculum was investigated to improve school health education. The purpose of this study is to identify the health education contents and time in textbooks of the 6th grade primary school curriculum. In this study, the textbooks & teacher's teaching manuals of the 6th grade curriculum were analyzed with a health instruction framework for Korean schools developed by the Korean Nurse Association & Korean School Health Education Association in 1993 and health care framework for health education curriculum presented by Kim in 1991. The results are as follows ; 1) Health education hours of the curriculum are 206 hours, about 34.3 hours a year. 2) The contents of health education were divided into nine subjects at primary schools. Organizing principles of learning experience(eg, integrity, sequence and continuity) were not considered sufficiently. The physical education & natural science subjects include a lot of health education contents. 3) The major content areas are community & environmental health areas and daily healthy life areas. 4) The major areas at each grade level are daily healthy concerns and safety & first-aid 5) The remarkable contrast to the 5th primary school curriculum are that environmental health is offered to the first grade step by step, and that drug use & abuse and mental health education are included in the 6th primary school curriculum. 6) The main contents of health education in 1st, 2nd. and 3rd grade curricula consist of treatment & recovery health functions. Those of the 4th grade curriculum consist of treatment & recovery health functions, and daily healthy life functions. Those of the 5th grade consist of growth & development functions. Those of the 6th grade consist of treatment & recovery health, growth & development functions. Most health care functions belong to physical health care. The results above suggest that we put together the divided contents of health education and manage them on the basis of systematic integration.

  • PDF

Study of Quantitative Assessment Standard for Type 1 and Type 2 Gas Cylinders Using Acoustic Emission Testing (음향방출법을 이용한 Type 1 및 Type 2 가스실린더의 정량적 평가기준에 대한 연구)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Kim, Kyung-Hoon;Yoon, Dong-Jin;Bae, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Acoustic emission testing (AET) of cylinders is advantageous in that it can be directly conducted on cylinders installed in a car, without needing to dissemble them on a real-time basis. Therefore, users prefer AET over other nondestructive testing methods. Owing to these advantages of AET, it has been approved by the Department of Transportation of the U.S. as a safety evaluation method for pressure containers or as an alternative to the hydroproof testing method. This paper presents a study of the quantitative evaluation criteria for a container having ultrasonic testing defects and also for Type 1 and Type 2 gas cylinders, which are defective seamless pressure containers provided by NK, a manufacturer of pressure containers. For the Type 1 cylinder, the process from crack growth to leak was observed in a repetitive fatigue test using a 113 L container according to ASTM E 1419-02. Further, for the Type 2 cylinder, integrity was evaluated using a 119 L sound container and a container damaged by hydraulic pressure, by the slow-fill method according to ASTM E 2191-02. Based on the AET results of the Type 1 and Type 2 cylinders, quantitative evaluation criteria were established for a defective and non-defective container.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

Security Credential Management & Pilot Policy of U.S. Government in Intelligent Transport Environment (지능형 교통 환경에서 미국정부의 보안인증관리 & Pilot 정책)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • This paper analyzed the SCMS and pilot policy, which is pursued by the U.S. government in connected vehicles. SCMS ensures authentication, integrity, privacy and interoperability. The SCMS Support Committee of U.S. government has established the National Unit SCMS and is responsible for system-wide control. Of course, it introduces security policy, procedures and training programs making. In this paper, the need for SCMS to be applied to C-ITS was discussed. The structure of the SCMS was analyzed and the U.S. government's filot policy for connected vehicles was discussed. The discussion of the need for SCMS highlighted the importance of the role and responsibilities of SCMS between vehicles and vehicles. The security certificate management system looked at the structure and analyzed the type of certificate used in the vehicle or road side unit (RSU). The functions and characteristics of the certificates were reviewed. In addition, the functions of basic safety messages were analyzed with consideration of the detection and warning functions of abnormal behavior in SCMS. Finally, the status of the pilot project for connected vehicles currently being pursued by the U.S. government was analyzed. In addition to the environment used for the test, the relevant messages were also discussed. We also looked at some of the issues that arise in the course of the pilot project.

A study on the Evaluation of Real-Time Map Update Technology for Automated Driving (자율주행 지원을 위한 정밀도로지도 갱신기술 평가를 위한 기준 도출 연구)

  • PARK, Yu-Kyung;KANG, Won-Pyung;CHOI, Ji-Eun;KIM, Byung-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.146-154
    • /
    • 2019
  • Recently, a system has been developed and applied to establish and utilize HD maps through R&D. The biggest problem, however, is the lack of a proper HD map update system, which requires the development and adoption of such a system as soon as possible. In addition, in the case of updating HD maps for automated driving, integrity and accuracy of maps are required for safe driving, so an test of these technologies and data quality is required. In April 2018, the Ministry of Land, Infrastructure and Transport implemented a project to 'Develop Technology to Demonstrate and Share the Instant Road Change Detection and Update Technology for automated driving. This paper analyzed the technology for updating map based on the investigation and analysis of relevant technology trends for the development of integrated demonstration and sharing technology of road change rapid detection and updating map technology, and put forward the criteria for road change rapid detection, integrated quality verification of update technology. It is expected that the results of this study will contribute to quality assurance of HD maps that support safety driving for automated vehicles.

Secure and Efficient V2V Message Authentication Scheme in Dense Vehicular Communication Networks (차량 밀집환경에서 안전하고 효율적인 V2V 메시지 인증기법)

  • Jung, Seock-Jae;Yoo, Young-Jun;Paik, Jung-Ha;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.41-52
    • /
    • 2010
  • Message authentication is an essential security element in vehicular ad-hoc network(VANET). For a secure message authentication, integrity, availability, privacy preserving skill, and also efficiency in various environment should be provided. RAISE scheme has been proposed to provide efficient message authentication in the environment crowded with lots of vehicles and generally considered to be hard to provide efficiency. However, as the number of vehicles communicating in the area increases, the overhead is also incurred in proportion to the number of vehicles so that it still needs to be reduced, and the scheme is vulnerable to some attacks. In this paper, to make up for the vulnerabilities in dense vehicular communication network, we propose a more secure and efficient scheme using a process that RSU(Road Side Unit) transmits the messages of neighbor vehicles at once with Bloom Filter, and timestamp to protect against replay attack. Moreover, by adding a handover function to the scheme, we simplify the authentication process as omitting the unnecessary key-exchange process when a vehicle moves to other area. And we confirm the safety and efficiency of the scheme by simulating the false positive probability and calculating the traffic.

Quality Control Tests and Acceptance Criteria of Diagnostic Radiopharmaceuticals (진단용 방사성의약품의 품질관리시험 및 기준)

  • Park, Jun Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Radiopharmaceuticals are drugs that contain radioisotopes and are used in the diagnosis, treatment, or investigation of diseases. Radiopharmaceuticals must be manufactured in compliance with good manufacturing practice regulations and subjected to quality control before they are administered to patients to ensure the safety of the drug. Radiopharmaceuticals for administration to humans need to be sterile and pyrogen-free. Hence, sterility tests and membrane filter integrity tests are carried out to confirm the asepticity of the finished drug product, and a bacterial endotoxin test conducted to assess contamination, if any, by pyrogens. The physical appearance and the absence of foreign insoluble substances should be confirmed by a visual inspection. The chemical purity, residual solvents, and pH should be evaluated because residual by-products and impurities in the finished product can be harmful to patients. The half-life, radiochemical purity, radionuclidic purity, and strength need to be assessed by analyzing the radiation emitted from radiopharmaceuticals to verify that the radioisotope contents are properly labeled on pharmaceuticals. Radiopharmaceuticals always carry the risk of radiation exposure. Therefore, the time taken for quality control tests should be minimized and care should be taken to prevent radiation exposure during handling. This review discusses the quality control procedures and acceptance criteria for a diagnostic radiopharmaceutical.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.