• Title/Summary/Keyword: Safety Estimation

Search Result 1,647, Processing Time 0.027 seconds

Enhanced Attitude Determination with IMU using Estimation of Lever Arms (레버암 상태 추정을 이용한 IMU 의 자세 결정 알고리즘)

  • Fang, Tae Hyun;Oh, Jaeyong;Park, Sekil;Park, Byoun-Jae;Cho, Deuk-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.941-946
    • /
    • 2013
  • In this paper, an enhanced method for attitude determination is proposed for systems using an IMU (Inertial Measurement Unit). In attitude determination with IMU, it is generally assumed that the IMU can be located in the center of gravity on the vehicle. If the IMU is not located in the center of gravity, the accelerometers of the IMU are disturbed from additive accelerations such as centripetal acceleration and tangential acceleration. Additive accelerations are derived from the lever arm which is the distance between the center of gravity and the position of the IMU. The performance of estimation errors can be maintained in system with a non-zero lever arm, if the lever arm is estimated to remove the additive accelerations from the accelerometer's measurements. In this paper, an estimation using Kalman filter is proposed to include the lever arm in the state variables of the state space equation. For the Kalman filter, the process model and the measurement model for attitude determination are made up by using quaternion. In order to evaluate the proposed algorithm, both of the simulations and the experiments are performed for the simplified scenario of motion.

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

Modeling of the Safety Distance between Defrost Heater and Plastic Inner Wall of Refrigerator (제상 히터와 냉장고 플라스틱 내벽 사이의 안전거리에 대한 모델링)

  • Jung, Young;Shin, Jong-Min;Tikhonov, Alexei V.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • Two dimensional modeling was carried out to find the safety distance between the defrost heater and the plastic inner wall of domestic refrigerator Estimation was processed for the three cases; the estimation of plastic wall temperature (1) without any protection, (2) with an aluminum foil attached on a wall, and (3) with an aluminum shield installed between heater and wall. The former two cases are found to be dangerous during defrosting process, because the temperatures of inner wall reach above 80'C , which is the upper temperature limit of the wall material. The case with an aluminum shield is considered to be safe by maintaining the temperature of the wall in the range of 6$0^{\circ}C$ during defrosting process.

A Study on the Performance Index of System Evaluation for Safety Monitoring Configuration based on Human- Computer Interaction (인간-컴퓨터작업에서 안전감시체계의 시스템평가 수행도지수에 관한 연구)

  • 오영진;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.199-206
    • /
    • 1991
  • As the development of modern technology, human works shift whose roll from physical conditions to the system monitoring tasks. In this paper, safety-presentation configuration is discussed instead of well-known fault-warning configuration. Safety-presentation configuration is verified as superior to the fault-warning configuration in hazard prevention. The estimation of system states involves the decision making environments which lack of required in formations and most of all the informations are not precise too. And the limitation of human information processing show doubtful results. So the estimation of system states is regardes as fuzzy number, and its operation produces the parameter that explain the discriminability(d), decision criterion ($\beta$) of system operator's behaviors. These two values served as performance indices. Especially the $\beta$ is a good milestone of the operator's altitude degree of caution.

  • PDF

Optimized Fabrication of FGMs and DIC Evaluation (FGMs의 최적화 제조와 DIC 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Recently new technological development needs the advances in the fields of new materials. The most advanced design is not useful if new material's performance is not realized adequately for bearing the service loads and conditions. FGMs suggests the reasonable solution for the those requirements because of its wide range microstructure and the continuous constitutions. It's especially good for the heat-resisting components, piezoelectricity and aerocraft fields. However the fabrication and its experimental estimation methods have not been established because of its various freedom of material's properties. Therefore it is necessary to develope the fabrication method and estimation of strength and deformation. The experiments are conducted under a four point flexural test. According to results, this study shows that FGMs is well fabricated and the deformation and strain fields are expressed very well by digital image correlation method.

A review of missing video frame estimation techniques for their suitability analysis in NPP

  • Chaubey, Mrityunjay;Singh, Lalit Kumar;Gupta, Manjari
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1153-1160
    • /
    • 2022
  • The application of video processing techniques are useful for the safety of nuclear power plants by tracking the people online on video to estimate the dose received by staff during work in nuclear plants. Nuclear reactors remotely visually controlled to evaluate the plant's condition using video processing techniques. Internal reactor components should be frequently inspected but in current scenario however involves human technicians, who review inspection videos and identify the costly, time-consuming and subjective cracks on metallic surfaces of underwater components. In case, if any frame of the inspection video degraded/corrupted/missed due to noise or any other factor, then it may cause serious safety issue. The problem of missing/degraded/corrupted video frame estimation is a challenging problem till date. In this paper a systematic literature review on video processing techniques is carried out, to perform their suitability analysis for NPP applications. The limitation of existing approaches are also identified along with a roadmap to overcome these limitations.

Qualitative Assessment for Hazard on the Electric Power Installations of a Construction Field using FMEA (FMEA를 이용한 건설현장 전력설비의 위험성에 대한 정성적 평가)

  • Kim Doo-hyun;Lee Jong-ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.36-41
    • /
    • 2004
  • This paper presents an qualitative assessment for hazard on the electric power installations of a construction field using FMEL The power installations have the mission to maintain the highest level of service reliability on the works. The more capital the electric power invest the higher service reliability they plausibly will achieve. However, because of limited resources, how effectively budgets can be allocated to achieve service reliability as high as possible. The assessment typically generates recommendations for increasing component reliability, thus improving the power installation safety. The FMEA tabulates the failure modes of components and how their failure affects the power installations being considered. Tn order to estimate the risks of a failures, the FMEA presents criticality estimation or risk priority number using the severity, occurrence, and detectability. The results showed that the highest components of the risk priority number among components were condenser, transformer, MCCB and LA. And In case of the criticality estimation, the potential failure modes were abnormal temperature rise, insulation oil leakage, deterioration for the transformer, overcurrent for the MCCB and operation outage fir the LA.

Estimation of Road Surface Condition and Tilt Angle to Improve the Safety of Mobility Aids for the Elderly (노인용 보행보조기의 안전성 향상을 위한 노면 상태 및 기울기 추정)

  • Park, Gi-Dong;Kim, Jong-Hwa;Choi, Jin-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2022
  • This paper proposes a method for estimating the road surface condition and tilt angle using an inertial measurement unit (IMU) to improve the safety in the use of mobility aids for the elderly. The measurements of the accelerometers of the IMU usually include the accelerations caused by not only the gravitational force but also linear and rotational motions. Thus, the gravitational accelerations are first extracted using several physical constraints and then incorporated into the Kalman filter to estimate the tilt angle. In addition, because the magnitudes of the accelerations produced by the rotational motions (roll and pitch motions) vary with the road surface condition, a criterion based on such accelerations is presented to classify the condition of the road surface. The obtained road surface condition and tilt angle are finally combined to provide the safety information (e.g., safe, warning, and danger) for the user to improve the walking safety. Experiments were carried out and the results showed that the proposed method can provide the condition of the road surface, the tilt of the road surface, and the safety information correctly.

Assessing Estimation Methods of the Expected Crashes using Panel Traffic Crash Data (패널교통사고자료 기반 기대교통사고건수 추정기법 평가)

  • Sin, Gang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • To evaluate highway safety countermeasures or identify high risk sites, the expected crashes for a site (or segment) have been estimated using the panel crash data. Past studies show that two different methods can be employed to estimate the expected crashes: observed crash based method and empirical Bayes (EB) method. This study conducts a simulation study to analyze how the estimation errors of the two estimates are affected by the different structures of the panel crash data and the presence of the change in safety over time. The results disclose that the estimation errors of the observed crash based estimates (i.e. the mean observed crash and comparative parallel estimate) are always greater than those of the EB estimates regardless of the structure of the panel crash data and the presence of the change in safety over time. Thus, it is highly recommended that the EB method be used in the study of traffic safety to obtain more reliable estimates for the expected crashes. In addition, this study corroborates that the estimation errors of the two estimates decrease as the analysis periods increase if safety does not change over time. Hence, it is also recommended that the 1-year analysis period used for identifying high risk sites in Korea be extended to produce more efficient estimates of the time-constant expected crashes.