• Title/Summary/Keyword: Safe signal operation

Search Result 75, Processing Time 0.026 seconds

Development of the structural health record of containment building in nuclear power plant

  • Chu, Shih-Yu;Kang, Chan-Jung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2038-2045
    • /
    • 2021
  • The main objective of this work is to propose a reliable routine standard operation procedures (SOP) for structural health monitoring and diagnosis of nuclear power plants (NPPs). At present, NPPs have monitoring systems that can be used to obtain the quantitative health record of containment (CTMT) buildings through system identification technology. However, because the measurement signals are often interfered with by noise, the identification results may introduce erroneous conclusions if the measured data is directly adopted. Therefore, this paper recommends the SOP for signal screening and the required identification procedures to identify the dynamic characteristics of the CTMT of NPPs. In the SOP, three recommend methods are proposed including the Recursive Least Squares (RLS), the Observer Kalman Filter Identification/Eigensystem Realization Algorithm (OKID/ERA), and the Frequency Response Function (FRF). The identification results can be verified by comparing the results of different methods. Finally, a preliminary CTMT healthy record can be established based on the limited number of earthquake records. It can be served as the quantitative reference to expedite the restart procedure. If the fundamental frequency of the CTMT drops significantly after the Operating Basis Earthquake and Safe Shutdown Earthquake (OBE/SSE), it means that the restart actions suggested by the regulatory guide should be taken in place immediately.

Dynamic Characteristics of a Hydraulic Fishing Winch Simulator (유압식 어로 윈치 시뮬레이터의 동적 거동 특성)

  • LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2004
  • To meet the increasing demand from various fishing fields for training of fishing equipment operators, a fishing winch simulator was designed to train maritime students in the correct and safe operation of hydraulic winches under various load conditions related to fishing operations. The aim of this study is to describe the basic dynamic characteristics of the newly developed hydraulic fishing winch simulator and particularly to analyze the mechanical responses produced on the winch operation controls. The winch simulator consists of two winch units, a computer control and data acquisition system, a control consol and other associated mechanisms. When one winch is in hauling mode, the other one will always be in loading mode. The revolution speed of the hauling winch was controlled by a proportional directional control valve, and the braking torque of the loading winch was controlled by a proportional pressure control valve. The simulation experiments indicated that the dynamic characteristics of the hauling winch followed the braking response characteristics of the loading winch. The tests also showed that the warp speed and tension linearly depend on the pressure differential across the motor of the loading winch controlled by operating the proportional pressure control valve during the hauling operation. The experience gained from various training courses showed that the fishing winch simulator was very realistic and it was valuable for training novice winch operators. The results of the winch simulation exercise were recorded and used to evaluate the training on the operation and handling of the winch system. From these test results, we concluded that the tension acting on the warp during hauling operations can successfully be simulated by controlling the pressure differential across the motor with step changes of the control input signal to the proportional pressure control valve of the loading winch.

A Study on Bike Signal Operation Methods at Three-Legged Intersections (3지 교차로에서 자전거 신호운영방안에 관한 연구)

  • Heo, Hui-Beom;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.157-167
    • /
    • 2011
  • Many problems, such as unexpected delay and collision with pedestrians or vehicles, occur generally at signalized intersections where bicycle users are frequently involved. These problems have hindered bicycle users from riding bicycles on urban highways. The aim of this study is to suggest proper traffic signal operation methods for safe and convenient highway crossing of bicycles. Three types of crossing methods at signalized intersections are proposed and analyzed: (1) indirect left turn, (2) direct left turn on an exclusive bicycle lane, and (3) direct left turn on a bicycle box. The VISSIM simulation tests were conducted based on fifty-four operation scenarios prepared by varying vehicle and bicycle traffic volumes. Both delay and the number of stops are used as the measures of effectiveness in the analysis. The results from the three-legged signalized intersections suggested that (1) the indirect left turn is appropriate when vehicle demand is high while bicycle demand is not, (2) direct left turn on an exclusive bicycle lane is appropriate when both vehicle and bicycle demands are high, and (3) direct left turn on a bicycle box is appropriate when both vehicle and bicycle demands are light.

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.

A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle (심해 무인잠수정 1차 케이블의 동적거동 수치해석)

  • Kwon, Do-Young;Park, Han-Il;Jung, Dong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

The signal system operation plan research for a Tilting train introduction (국내 틸팅열차 도입을 위한 신호시스템 운영방안 연구)

  • Lee, Hoon-Koo;Lee, Nam-Hyeong;Lee, Soo-Hwan;Lee, Young-Ho;Baek, Jong-Hyen
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1999-2004
    • /
    • 2009
  • Since 2003, the domestic ground signalling system of the Kyeongbu and Honam lines has been steadily improving with the introduction of the ATP system and application of the system to the train is actively being pursued for 2009 target. Therefore, new ground signalling systems are being installed to the trains and track conditions to control the train speed to a maximum of either 80km/h, 120km/h, 150km/h, or 160km/h. As well, considering safe breaking distance, block signalling has been installed and also the change over times of the track switching device has been adjusted according to the train speed. Since the new Tilting trains will be running faster than present trains, at speeds over 180 km/h, we anticipate that there will be problems with present signalling facilities. Therefore this paper attempts to examine the various problems with the interface between the ATP signalling system and the new Tilting trains and also it will propose the most effective operating plan based upon case studies of successful foreign operations.

  • PDF

A numerical analysis for the dynamic behavior of ROV launcher and 1st cable under combined excitations (결합가진 하의 ROV 런쳐와 케이블의 동적거동 수치 해석)

  • KWON DO-YOUNG;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.198-203
    • /
    • 2004
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The first cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A ROV launcher is also excited by the 1st cable motion. A numerical method is necessary for analysing the dynamic behaviour of the first marine cable and the ROV launcher. In this study, a numerival program is appled to a 6,000m long cable for a deep-sea unmanned underwater vehicle to shaw shows the dynamic behaviour of the cable and the ROV launcher under combined excitations.

  • PDF

Direction of research on Railroad Signal Safety Facilities from the viewpoint of Train Control (열차제어 측면의 철도신호안전설비 개발방향 연구)

  • Kim, You-Ho;Lee, Hoon-Koo;Lee, Soo-Hwan;Pyeon, Seon-Ho;Lee, Young-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1270-1278
    • /
    • 2008
  • A great deal of development has been made in the field of railroad control in Korea. Like the recent High speed railroad (KTX) and the intercity light rail train (LRT) are being vigorously promoted. Therefore, in concert with the new railroad development projects, improved train control technics are being applied. Along with the focus on these newly developed advanced technologies the need for a reliable safety system for the safety of the passengers and railroad control personnel alike is being intensified. New safety facilities are continuously being developed in order to safely introduce and develop these new technologies. There is an urgent need for research and development of safety facilities for the implementation of the presently developed facilities as well as for the presently being used. Therefore, this research will study the safe operation of Korean railroad and the implementation situation of the class, functionality, ensured safety range etc. of the safety facilities for users and operators. In studying the material of the kinds of implemented safety facilities and technologies being used abroad we have researched into the most suitable direction of development of safety facilities for the Korean railroad environment.

  • PDF

Noise Removal of Radar Image Using Image Inpainting (이미지 인페인팅을 활용한 레이다 이미지 노이즈 제거)

  • Jeon, Dongmin;Oh, Sang-jin;Lim, Chaeog;Shin, Sung-chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.118-124
    • /
    • 2022
  • Marine environment analysis and ship motion prediction during ship navigation are important technologies for safe and economical operation of autonomous ships. As a marine environment analysis technology, there is a method of analyzing waves by measuring the sea states through images acquired based on radar(radio detection and ranging) signal. However, in the process of deriving marine environment information from radar images, noises generated by external factors are included, limiting the interpretation of the marine environment. Therefore, image processing for noise removal is required. In this study, image inpainting by partial convolutional neural network model is proposed as a method to remove noises and reconstruct radar images.

Sentinel lymph node mapping using tri-modal human serum albumin conjugated with visible dye, near infrared fluorescent dye and radioisotope

  • Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.62-73
    • /
    • 2015
  • We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.