• Title/Summary/Keyword: Safe design

Search Result 2,025, Processing Time 0.024 seconds

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF

Actual Use Pattern of Environment-friendly Finish Materials in Recently-Constructed and Remodeled Apartment Houses (공동주택 유형별 친환경 마감재 사용 실태분석 연구)

  • Lee, Ji-Soon
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • The concepts of interior design work have set forward an aesthetic and functional proposition to be answered by those who design spaces. The available range of suitable materials for interior use appears to be almost inexhaustible in this day and age. Now a day, relatively new fields of study on environmental-friendly interior examine humans'innate affinity for health and explore its implications for architecture and the built environment. A growing field of research suggests that spaces' relationship to aesthetics and environment can either help or hinder their occupants' health and wellness, productivity, and even their creativity. This paper presents several examples of already built apartment houses in practice, and discusses the demand of users of the spaces for health and sustainable environment, deepening the relationship between newly-constructed spaces and the remodeled ones. The considerations to some new and contemporary materials from the aspect of healthy indoor architecture design are presented in this paper. Designers need to rethink the conventional and high-tech interior environment in apartment houses with respect to perceived air quality, material emissions, and odors. The future of interior design is oriented on light shapeable materials which are able to create a unique memorable atmosphere. The primary assignment in accepting recent materials and proceedings is our responsibility to creating proposals, that are mainly safe, hygienic and environmentally proper.

A Case Study of Unmanned Lunar Lander Design (무인 달 착륙선 설계 사례 분석)

  • Rew, Dong-Young;Ju, Gwang-Hyeok;Kim, Sung-Hoon;Lee, Sang-Ryool
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.62-76
    • /
    • 2010
  • In this paper, recent researches about the unmanned lunar lander development are studied. Objectives of this study are to derive research trends and to identify key design activities especially in early design phase of unmanned lunar lander. Case study covers SELENE-2 of Japan, LEDA and MoonNEXT of ESA, and small and modular spacecraft approach of NASA. Lunar lander concepts proposed for the International Lunar Network Anchor Nodes are also studied. For each lunar lander program, mission requirements are summarized and mission design results are reviewed. Approaches of safe lunar landing including design of navigation, guidance and control, combination of sensors, derived sensor and propulsion performance requirements are also analyzed.

  • PDF

A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+ (APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석)

  • Moon, Horim;Kim, Han Gon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

Development and Application of a Web-based Expert System using Artificial Intelligence for Management of Mental Health by Korean Emigrants (해외 이민 한국인의 정신건강관리를 위한 웹기반 지능형 전문가시스템 개발 및 적용)

  • Bae, Jeongyee
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.2
    • /
    • pp.203-214
    • /
    • 2013
  • Purpose: The purpose of this project was to develop an international web-based expert system using principals of artificial intelligence and user-centered design for management of mental health by Korean emigrants. Using this system, anyone can access the system via computer access to the web. Methods: Our design process utilized principles of user-centered design with 4 phases: needs assessment, analysis, design/development/testing, and application release. A survey was done with 3,235 Korean emigrants. Focus group interviews were also conducted. Survey and analysis results guided the design of the web-based expert system. Results: With this system, anyone can check their mental health status by themselves using a personal computer. The system analyzes facts based on answers to automated questions, and suggests solutions accordingly. A history tracking mechanism enables monitoring and future analysis. In addition, this system will include intervention programs to promote mental health status. Conclusion: This system is interactive and accessible to anyone in the world. It is expected that this management system will contribute to Korean emigrants' mental health promotion and allow researchers and professionals to share information on mental health.

Determination of Proper Design Speed at Inter-Change Ramp in a Highway (입체교차로 유.출입 접속부의 적정 설계속도 결정)

  • Choi, Seok-Keun;Lee, Seon-Gyu;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.425-431
    • /
    • 2006
  • Recently, the government has adjusted the 4th National Master Plan in an effect to achieve balanced national land development. However, the current traffic accident index ranks among the lowest in OECD countries, ranking 25th out of 29 countries. Therefore, this study is aimed at indicating problems with National Expressway and local roads developing a solution by analyzing the problems and suggesting the most appropriate design speed for inter-changes where the traffic accidents occur frequently. With the results, it is to obtain a design speed decision formula at interchange branch points to prevent traffic accidents, secure safe and optimal road conditions and maximize traffic load capability.

Light-weight Design of Automotive Spring Link Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 스프링 링크의 경량화 설계)

  • Park, Jun-Hyub;Kim, Kee Joo;Yoon, Jun-Gyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.157-161
    • /
    • 2013
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger spring link have been studied without sacrificing the safety of automotive components. In this study, the weight reduction design process of spring link could be proposed based on the variation of von-Mises stress contour by substituting an aluminum alloys (A356) having tensile strength of 245 MPa grade instead of SAPH440 steels. In addition, the effect of the stress and stiffness on shape variations of the spring link were examined and compared carefully. It could be reached that this approach could be well established and be contributed for light-weight design guide and the safe design conditions of the automotive spring link development.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

Ergonomic Analysis and Improvement of Crane Safety Certification Standards (크레인 안전인증기준에 대한 인간공학적 분석 및 개선)

  • Lee, Yongseok;Jung, Kihyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Crane is an important equipment for the transport of heavy goods in industrial sites, but it is also known as one of the most fatal machines. In order to reduce crane accidents, it is necessary to minimize human errors during crane operations. To achieve this, ergonomic design principles are recommended to be reflected from the crane design stage. The study analyzed the safety certification standards for crane that should be fulfilled at the crane design and manufacturing stage. This study selected five representative ergonomic design principles (feedback, compatibility, consistency, full-proof, and fail-safe) by surveying heuristic evaluation principles that are widely used for usability evaluation in early design stage. Next, the principles were applied to the safety certification standards to identify insufficient clauses. This study identified 12 insufficient clauses out of 119 in the current safety certification standards for crane and discussed their improvement directions to comply the ergonomic principles. The analysis results of this study can help of improving the safety certification standards and the method used in this study can also be applied to identify insufficient clauses in the safety certification standards for other industrial machines such as press machine and lift.