• Title/Summary/Keyword: Saccharomyces cerevisine

Search Result 6, Processing Time 0.019 seconds

질산염이 Saccharomyces cerevisiae의 발효작용에 미치는 영향

  • 김상준
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.3-115
    • /
    • 1979
  • 중금속을 함유한 13종의 질산염을 명 농도별로 첨가하여 주정효모 Saccharomyces cerevisine의 주정생산과 발효작용에 미치는 영향을 조사하였다. 1. 일반적으로 중금속을 함유한 질산염은 그 첨가량이 0.0001mo1. 보다 고농도일수록 Saccharo-myces cerevisiae의 발효작용을 점차 억제하였다. 2. Nickel nitrate, chromium nitrate들의 0.0001 moi.의 첨가는 Saccharomyces cerevisiae의 alcohol 발효작용을 약간촉진시켰다. 3. Cadmium nitrate 0.001mo1. 이상, cupric nit-rate, nickel nitrate, cobalt nitrate 0.01mo1. 이상, 그리고 silver nitrate, mercurous nitrate, manganese nitrate, zinc nitrate, lead nitrate, chromiun nitrate, ferric nitrate, bismuth nitrate 0.1mol. 의 농도에서 Saccharomyces cerevisiae 의 발효작용은 완전히 조지되었다.

  • PDF

Purification and Characterization of an Insect Antibacterial Peptide, Defensin, Expressed in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 발현한 곤충 항균펩티드, defensin의 정제 및 특성 조사)

  • 강대욱;이준원;김보연;안종석
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.483-489
    • /
    • 2002
  • We investigated the biochemical properties of insect defensin expressed and secreted from Saccharomyces corevisiae. The defensin showed extremely high resistance to boiling for up to 30 min and to pH values tested from 2.0 to 12.0. The treatment of defensin with various proteases abolished antibacterial activity. However, amylases, cellulase, lipase and catalase had no effect on the activity. The defensin was purified to homogeneity through ammonium sulfate concentration of culture supernatant, SP-Sepharose column chromatography and RP-HPLC. Tricin-SDS-PAGE analysis revealed that the molecular weight of the defensin was about 4.0 kDa. The antibacterial activity of the purified defensin was verified by renaturation of stained gel and gel pouring assay using Micrococcus luteus as a test organism.

Restoration of Saccharomyces cerevisiae coq7 Mutant by a Neurospora crassa Gene (Neurospora crassa 유전자에 의한 Saccharomyces cerevisiae coq7 돌연변이의 회복)

  • 김은정;김상래;이병욱
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.933-942
    • /
    • 2003
  • CoenzymeQ is a quinone derivative with a long isoprenoid side chain. It transports electrons in the respiratory chain located in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. It also functions as an antioxidant. Saccharomyces cerevisine coq mutants, that are deficient coenzyme Q biosynthesis fail to aerobically grow. They are not able to grow on non-fermentable carbon sources, such as glycerol, either The putative $coq^{-7}$ gene involved in coenzyme Q biosynthesis of Neurospora crassa was cloned and used for complementation of S. cerevisiae coq7 mutant. The predicted amino acid sequence of N. crassa COQ7 showed about 58% homology with Coq7p of S. cerevisiae. The growth rate of S. cerevisiae $coq^7$ mutant transformed with the N. crassa $coq^{-7}$ gene was restored to the wild-type level. The complemented 5. cerevisiae strain was able to grow with glycerol as a sole carbon source and showed less sensitivities to linolenic acid, a polyunsaturated fatty acid.

The Conditions Affecting Ethanol Tolerance of Yeast strains in Alcohol Fermantation - Study on the Fermantation Temperature and Substrate Type (알콜발효에서 효모의 에탄올 내성 조건-발효온도와 기질종류에 대한 연구)

  • 김형진;유연우
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.167-171
    • /
    • 1989
  • The alcohol fermentation using glucose and lactose was carried out to study the effect of fermentation temperature on the ethanol tolerance of Saccharomyces cerevisiae STV89 and Kluyveromyces fragilis CBS397. The maximum specific growth rate and ethanol production rate were increased up to 35$^{\circ}C$ with the fermentation temperature, although maximum ethanol and cell concentration were decreased by increasing the fermentation temperature. The cell viability was also improved by lowering the fermentation temperature. Under the experimental conditions, the best ethanol tolerance of yeast strains was obtain at $25^{\circ}C$. The ethanol tolerance of S. cerevisiae is better than that of K. fragilis at the same fermentation condition. With respect to the carbon source, glucose is found to be more favorable for ethanol tolerance of K. fragilis than lactos.

  • PDF

Optimization of Environmental Conditions for Hirudin Production from Recombinant Saccharomyces cerevisiae (재조합 효모를 이용한 Hirudin 발효생산조건의 최적화)

  • 이동훈;서진호
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.8-15
    • /
    • 1994
  • The research has been carried out to optimize a recombinant S. cerevisine fermentation process for the production of an anticoagulant hirudin. The structural gene coding for hirudin was combined with the GAL10 promoter for controlled expression, the MFal signal sequence for hirudin secretion, and the GAL7 terminator for transcriptional termination. Growth medium composition and environmental conditions were optimized for maximizing cell growth and final hirudin concentration. The optimized conditions included yeast extract 40g/$\ell$, casamino acid 5g/$\ell$, g1ucose 20g/$\ell$, galactose 30g/$\ell$, DO 50% and temperature $30^{\circ}C$. These conditions yielded the specific cell growth rate of $0.13hr^{-1}$, the final cell density of 30g cell/$\ell$ and the final hirudin concentration of 64mg/$\ell$ in the batch fermentation with a 2.5$\ell$ jar fermentor.

  • PDF

The Antioxidative Activity of Glutathione-Enriched Extract from Saccharomyces cerevisiae FF-8 in In Vitro Model System (In Vitro 과산화지질에 미치는 glutathione 고함유 효모 Saccharomyces cerevisiae FF-8의 항산화효과)

  • Lee Chi-Hyeoung;Cha Jae-Young;Jun Bang-Sil;Lee Ho-Jun;Lee Young-Chun;Cho Yong-Lark;Cho Young-Su
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.819-825
    • /
    • 2005
  • The Antioxidative accvities of the cell free extracts containing high glutathione by Saccharomyces cerevisiae FF-8 were tested in vitro experimental models : DPPH method for radical scavenging activity, ferric TBA method and ferric thiocyanate method using linoleic acid and tissue microsome for lipid peroxidation inhibitions. The concentration of intercellular glutathione by cultivating S. cerevisiae FF-8 in the YM optimal medium obtained $204\mug/ml$, which was increased by 2.76-fold from $74\mug/ml$ in the YM basal medium. A comparition between the YM basal medium and the YM optimal medium on antioxidative substance produced by S. cerevisiae FF-8 was investigated. In DPPH ($\alpha, \alpha-diphenyl-\beta-picrylhydrazyl$) method, the electron donating activity of the glutathione produced by S. cerevisiae FF-8 cultured in the YM optimal medium was as high as that of BHT ($ 0.05\%w/v $). The antioxidative a.tivity was measured by inhibition against lipid peroxidation of rat tissues' microsomes. The results of anti-oxidant activity of the cell free extracts by S. rerevisiae FF-8 cultured in the YM optimal medium was shown in the following order . $ liver 60.98\% > kidney 56.43\% > heart 52.91\% > brain 52.13\% > testis 45.57\% > spleen 42.95\% $. In antioxidative activities determined by ferric thiocyanate method and TBA methods against lipid peroxidation, the lipid peroxidation in the control mixture increased more rapidly than the typical peroxidation curve of linoleic acid from one day. The antioxidative activity of the cell free extracts by cultivating S. cerevisine FF-8 in the YM optimal medium were higher than that of the YM basal medium. These data indicate that the cell free extracts containing a high intercellular glutathione of S. cerevisiae FF-8 cultured in YM optimal medium showed strong antioxidative capacities by DPPH radical scavenging activity and ferric thiocyanate and TBARS measurements.