• Title/Summary/Keyword: Saccharomyces cerevisiae Y28

Search Result 98, Processing Time 0.028 seconds

Change in Growth of alcohol Fermentation Yeast with Addition of Deep Seawater (해양 심층수 첨가에 따른 알콜발효 효모의 증식 변화)

  • 김미림;정지숙;이기동
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.417-420
    • /
    • 2003
  • In order to study optimum culture condition of yeast medium added deep seawater, we examed samples with 9 yeast strains. The growth rate were measured for Saccharomyces cerevisiae 10, 11, 12, 901 and RCY and Saccharomyces kluyvery DJ97, Saccharomyces cerevisiae YJK, JK99, CMY-28 etc.. The growth of S. cerevisiae 12 was found most active in the deep seawater(hardness 500). The growth rate of S. cerevisiae 901 on medium containing deep seawater(hardness 1000) was faster than that of the yeast on medium without deep seawater. The use of deep seawater on the growth of Sacch.cerevisiae kluyvery DJ97 revealed maximum growth under the condition of hardness 200 of deep seawater and 10% of sugar concentration.

Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit

  • Lee, Jong-Sub;Park, Eun-Hee;Kim, Jung-Wan;Yeo, Soo-Hwan;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1253-1259
    • /
    • 2013
  • The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and $35^{\circ}C$, respectively. Under this growth condition, S. cerevisiae NK28 produced $98.9{\pm}5.67$ g/l ethanol in 24 h with a volumetric ethanol production rate of $4.12{\pm}0.24g/l{\cdot}h$. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 생물시계와 초단기 대사진동)

  • Kwon, Chong Suk;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.985-991
    • /
    • 2018
  • Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.

Expression of a Yeast Superkiller Gene(SK13) in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 효모 Superkiller 유전자(SK13)의 발현)

  • ;Wickner, Reed B.
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.114-119
    • /
    • 1990
  • A yeast chromosomal superkiller gene (SK13) was cloned and expressed in $ski3^{-}$ Saccharomyces cerevisiae strains. The gene was fused to the structural region of E. coli lacZ gene at its C-terminus in a yeast-E. coli shuttle vector, pSR605. The fused gene complemented $ski3^{-}$ strains with SK13 activity and the quantitative level of expression was measured as determined by assaying $\beta$-galactosidase activity. The SDS-polyacrylamide gel electrophoresis and the Western blot analysis of this fused protein showed the immuno-reacted bands with a protein of the estimated molecular size (ca.250Kd).

  • PDF

Expression of recombinant plasmids harboring glucoamylase gene STA in saccharomyces cerevisiae (Glucoamylase 유전자 STA를 포함한 재조합 플라스미드들의 saccharomyces cerevisiae에서의 발현)

  • 박장서;박용준;이영호;강현삼;백운화
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.181-187
    • /
    • 1990
  • STA gene coding glucoamylase was introduced into haploid Saccharomyces cerevisiae SHY3 and polyploid Saccharomyces cerevisiae 54. We constructed the recombinant plasmid by substituting the promoter region of alcohol dehydrogenase isoenzyme I gene for that of STA gene to increase the expression of STA gene and found that the activity of glucoamylase was increased in transformants. The plasmid stability was improved remarkably when we got the STA gene into the plasmid which had centromere. The activity of glucoamylase and transformation frequency of it, however, was decreased because of low copy number. Industrial polyploid strain was transformed with the recombinant plasmid having the $2\mu$ origin of replication and STA gene. It produced more alcohol than host when fermented in liquefied starch media. The industrial strain, however, was not transformed with the autonomously replicating plasmid containing centromere.

  • PDF

Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks (전분 기질에 대한 Saccharomyces cerevisiae CHY1077과 Zymomonas mobilis CHZ2501의 에탄올 발효 비교)

  • Choi, Giwook;Kang, Hyunwoo;Kim, Youngran;Chung, Bongwoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.977-982
    • /
    • 2008
  • The production of ethanol by microbial fermentation as an alternative energy source has been of interest because of increasing oil price. Saccharomyces cerevisiae and Zymomonas mobilis are two of the most widely used ethanol producers. In this study, characteristics of ethanol fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 was compared. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw materials commercially available for ethanol production. The volumetric ethanol productivities by Saccharomyces cerevisiae from brown rice, naked barley and cassava were $0.68g/l{\cdot}h$, $1.03g/l{\cdot}h$ and $1.28g/l{\cdot}h$ respectively. But for the Zymomonas mobilis, $2.19g/l{\cdot}h$(brown rice), $2.60g/l{\cdot}h$(naked barley) and $3.12g/l{\cdot}h$(cassava) were obtained. Zymomonas mobilis was more efficient strain for ethanol production than S. cerevisiae.

Cultural Characteristics of a Recombinant Saccharomyces cerevisiae for the Improved Production of a Antibacterial Peptide Defensin of Fleshfly (쉬파리 유래 항균텝티드 Defensin의 생산 증진을 위한 재조합 Saccharomyces cerevisiae의 배양학적 특성)

  • 안종석;강대욱;이준원;김민수;김보연;오원근;민태익
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.236-241
    • /
    • 2000
  • A defensin is an inducible antibacterial peptide from a fleshfly and contains 40 residues basic peptide with six cysteines. For the consiruction of recombinant S cerevisiae expressing defensin, the structural gene coding for active defensin was chemically synthesized and fused in fiam to GAP promoter, MFul preprosequence and the GAL7 transcription terminator, generating a recombinant plasnlid pGMD18. S. ce~evisine 2805 Gells were transror~ned to uracil prototroph by the pGMDl8 arid the transformed cells showing antibacterial activity against 111. luteus TAM1056 were selected by growth inhibition zone assay. The optimal culture conditions for the unprovement of the defensin production of a selected tmdonnant were investigated. The optirmzed medium containing 0.4% yeast extract, 2% corn steep liquor, 2.5% glucose and 0.05% $C_2CO_3$, could be determined and the optimum lemperature. and initial pH could be detennnied as $28^{\circ}C$ and pH 3, ~mpectively. The optimized conditioiis revealed the trvofold Increase in the cell growth and the fourfold in the antibaclerial activity. coinpar-ed with tllc Yl'D medium.

  • PDF

Characterization of Yakju Prepared with Yeasts from Fruits 2. Quality Characteristics of Yakju during Fermentation (효모에 따른 약주의 품질특성 2. 발효과정중 약주의 품질특성)

  • 양지영;신귀례;김병철;김용두
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.801-804
    • /
    • 1999
  • Quality characteristics of yakju prepared by different yeast strains such as Saccharomyces cerevisiae S 2, Saccharomyces cerevisiae S 6 and Saccharomyces cerevisiae IFO 1950 were investigated during fermentation. The pH in all kinds of yakju was gradually decreased until 6 days and then it was constant. In stage of fermentation, acidity of yakju made of Saccharomyces cerevisiae S 6 was higher than others. At the beginning stage of fermentation, ethanol contents were in the range of 0~2% increased to 9.5~11.5% after 10 days. Yakju made of Saccharomyces cerevisiae S-2 showed higher ethanol contents than others. Free sugars in yakju were found to be glucose and maltose. The contents of free sugars were decreased until 6 days and they were not detected. The content of ethanol in yakju showed the highest value at the 6th day and those of yakju A, B and C were 11.9, 9.5, 10.9%, respectively. Main organic acids in yakju were citric acid and lactic acid. The content of citric acid in yakju B was higher than others.

  • PDF

Kiwi-persimmon wine produced using wild Saccharomyces cerevisiae strains with sugar, acid, and alcohol tolerance

  • Hee Yul Lee;Kye Man Cho;Ok Soo Joo
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.52-64
    • /
    • 2023
  • 100 different yeast colonies were isolated from spontaneously fermented kiwis, persimmons, apples, pears, watermelons, grapes, grape fruits, peachs, and plums, and selected yeast strains were used to produce kiwi-persimmon mixed wine (KPMW). Among the isolates, five representative strains exhibited tolerance to sucrose, alcohol, pH, and potassium metabisulfite when compared with the control yeast strain (Saccharomyces cerevisiae KCCM 12615). All five yeast strains (Y4, Y10, Y28, Y78, and Y81) exhibited 99% 26S rDNA sequence similarity to S. cerevisiae. The pH, acidity, Brix, reducing sugar, alcohol, and organic acid contents were consistent in KPMW prepared from the S. cerevisiae KCCM 12615 and Y28 strains. KPMW made from the Y4, Y10, and Y28 strains exhibited lower quantities of free sugars than those of the KPMW made from the other yeast strains. The level of ethyl esters in KPMW prepared from the Y28 was higher than that in the other KPMWs. All strains, except for Y28, produced lower concentrations of sulfur and ketone compounds. Furthermore, the KPMW produced by the Y28 strains had total phenolic contents with 1.1 g/L, with DPPH and ABTS radical scavenging activities of 57.06% and 55.62%, respectively, and a FRAP assay value of 0.72. Our results suggest that Y28 is a promising yeast strain for producing high-quality wines.

Enhanced Secretion of Cell Wall Bound Enolase into Culture Medium by the sool-l Mutation of Saccharomyces cerevisiae

  • Kim, Ki-Hyun;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.248-252
    • /
    • 2004
  • In order to identify the protein(s) secreted into culture medium by the sool-l/retl-l mutation of Saccharomyces cerevisiae, proteins from the culture medium of cells grown at permissive (28$^{\circ}C$) and non-permissive temperatures (37$^{\circ}C$), were analyzed. Comparison of protein bands separated by SDS-PAGE identified a prominent band of 47-kDa band from a mutant grown at 37$^{\circ}C$. N-terminal amino acid sequencing of this 47-kDa protein showed high identity with enolases 1 and 2. Western blot analysis revealed that most of the cell wall-bound enolase was released into the culture medium of the mutant grown at 37$^{\circ}C$, some of which were separated as those with lower molecular weights. Our results, presented here, indicate the impairment of cell wall enolase biogenesis and assembly by the sool-l/retl-l mutation of S. cerevisiae.