• Title/Summary/Keyword: SWIR

Search Result 70, Processing Time 0.024 seconds

Development of Non-destructive Measurement System for the Detection of CGMMV Virus in Watermelon Seed(citrullus lanatus L) using Hyperspectral Imaging system (초분광 영상 시스템을 이용한 수박종자(Capsicum annuum L)의 오이 녹반 모자이크 바이러스(CGMMV) 감염의 비파괴 판별 시스템 개발)

  • Bae, Hyung-Jin;lohumi, Santosh;Kandpal, Lalit Mohan;Park, ChanHwan;Lim, Hyoun-Sub;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.43-43
    • /
    • 2017
  • 종자산업은 농작물 생산에 중요한 역할을 끼치는 좌우하는 요소 중에 하나로, 우량종자의 확보는 농작물 수급에 중요한 역할을 하는 농업부문의 원천산업이다. 오이 녹반 모자이크 바이러스(CGMMV)는 박과류에 가장 많은 피해를 끼치는 바이러스로 종자전염을 방지하고, 우량종자의 공급을 위해서는 감염종자와 비 감염종자의 판별은 필수적이다. 이에 본 연구에서는 초분광 영상 시스템을 이용하여 수박종자의 CGMMV의 감염 및 비 감염종자를 판별할 수 있는 기술을 개발하고자 하였다. 본 연구에서 사용된 바이러스 감염 종자는 CGMMV 바이러스 감염 수박종자를 사용하였으며, 생산된 종자를 초분광 영상 시스템을 통해 스크린 후, RNA를 추출하여 PCR분석법으로 바이러스의 감염유무를 확인하였으며, 이후 바이러스의 감염유무와 획득된 스펙트럼을 비교 분석하여 판별모델을 개발하고 이를 선별 시스템에 적용하였다. 모델개발에 사용된 초분광 영상 기술은 초분광 SWIR(Shortwave infraed : 1000-2500nm)영상 기술이 다. 획득된 초분광 SWIR 영상을 분석한 결과 바이러스 감염 종자가 유의미한 정확도로 판별이 되는 것으로 나타났다. 초분광 SWIR 영상기술이 바이러스 감염종자와 비감염종자를 비파괴적으로 선별하는데 효과적으로 적용이 가능할 것으로 판단된다.

  • PDF

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

A Quantitative Study for Hydrothermal Alteration Zones using Short Wavelength Infrared Spectrometry (단파장적외선 분광분석법을 이용한 열수변질대 정량화 연구)

  • Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Advanced argillic, argillic, and phyllic zones are the most important alteration patterns to predict the hidden ore body during exploration of hydrothermal deposits. We examined the quantitative relationship between the spectral absorption characteristics and the mineral content of the synthetic mixtures such as alunite-kaolinite and illite-kaolinite using short wavelength infrared (SWIR) spectroscopy. In the alunite-kaolinite mixtures, the spectral absorption characteristics of the alunite was highly correlated with the Hull quotient reflectance(0.99) and the kaolinite had the highest correlation with the Gaussian peak(0.92). Illite-kaolinite mixtures are essential for Gaussian deconvolution because of the overlap of absorption region. Illite and kaolinite mixtures indicate the high correlation of 0.93 and 0.98, respectively. The error ranges in the alunite-kaolinite(8%) and illite-kaolinite mixtures(5%) derived from SWIR were smaller than the ones(29% and 26%) obtained from X-ray diffraction(Rietveld) analysis. These results show that SWIR spectroscopic analysis is more reliable than XRD Rietveld analysis in terms of quantification of allowed minerals.

Simulation of 2-color Concentric Annular Ring Reticle Seeker and Counter-countermeasure using LMS Algorithm (2-color 동심원 레티클 탐색기의 시뮬레이션 및 LMS 방법을 이용한 반대응능력)

  • 홍현기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1990-1999
    • /
    • 2001
  • This paper presents a dynamic simulation loop that gives tracking results of 2-color concentric annular ring (CAR) reticle seeker. Our simulation tool includes the target/flare model and a proportional navigation guidance (PNG) loop. The CAR reticle system performances and the flare effects are analyzed in various scenarios. When a flare is present in the field of view (FOV), the simulation results show that the reticle seeker cannot keep a precise target tracking. In this paper, we propose 2-color counter-countermeasure (CCM) using the least mean square (LMS) method to cope with a presence of IR flare. The proposed method makes a simultaneous process in two infrared (IR) wavelength bands: MWIR add SWIR. The simulation results have shown that our adaptive IRCCM algorithm can achieve an effective cancellation of the flare signal with a relatively high intensity.

  • PDF

SWIR-LWIR Photoluminescence from Sb-based Epilayers Grown on GaAs Substrates by using MBE

  • Hussain, Laiq;Pettersson, Hakan;Wang, Qin;Karim, Amir;Anderson, Jan;Jafari, Mehrdad;Song, Jindong;Choi, Won Jun;Han, Il Ki;Lim, Ju Young
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1604-1611
    • /
    • 2018
  • Utilizing Sb-based bulk epilayers on large-scale low-cost substrates such as GaAs for fabricating infrared (IR) photodetectors is presently attracting significant attention worldwide. For this study, three sample series of $GaAs_xSb_{1-x}$, $In_{1-x}Ga_xSb$, and $InAs_xSb_{1-x}$ with different compositions were grown on semi-insulating GaAs substrates by using molecular beam epitaxy (MBE) and appropriate InAs quantum dots (QDs) as a defect-reduction buffer layer. Photoluminescence (PL) signals from these samples were observed over a wide IR wavelength range from $2{\mu}m$ to $12{\mu}m$ in agreement with the expected bandgap, including bowing effects. In particular, interband PL signals from $InAs_xSb_{1-x}$ and $In_{1-x}Ga_xSb$ samples even at room temperature show promising potential for IR photodetector applications.

Short-Wave Infrared Fluorescence-Guided Surgery Using Indocyanine Green in a Dog with a Cutaneous Mast Cell Tumor

  • Su-Hyeon Kim;Sungin Lee
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.395-399
    • /
    • 2022
  • A 6-year-old spayed, female golden retriever dog was presented with a skin mass on the dorsal region of the right carpus. The cytology result of the region revealed characteristics of mast cell tumors (MCTs). Short wave-infrared fluorescence-guided surgery using Indocyanine green (ICG) was performed to determine the surgical margin of the tumor. ICG was injected intravenously 24 hours before the surgery and the patient was hospitalized and carefully monitored. During the surgery, ICG fluorescence-based surgery was performed to identify the tumor and the surgical margin. The tumor was visible, and the skin mass was resected using NIR device for the guidance of the surgical margin of the tumor. Once the resection was complete, the surgical site was again inspected with SWIR fluorescence imaging to identify residual tumor cells. The resected tumor, using ICG navigation, was classified as low-grade cutaneous MCT and the margin was complete on the histopathological result. We report herein a case of resection of a cutaneous MCT in a dog using SWIR fluorescence imaging ICG which can be potentially used for the identification of tumors and evaluation of the surgical margin for complete resection.

Mineral Identification and Field Application by Short Wave Infrared (SWIR) Spectroscopy (단파장적외선 분광분석법을 이용한 광물동정과 현장적용성)

  • Kim, Chang Seong;Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • The analytical conditions including surface state, moisture effect, and device condition were investigated for applying Short Wave Infrared(SWIR) spectroscopy to the field survey. Among the three surface state of samples (exposed surface, cutting face and powder), both spectra from the exposed surface and cutting face are almost identical whereas spectral variation was detected in powder sample. Over 24-hours-dryring of the wet sample at room temperature, the samples show a similar spectrum with that of dry condition. The result suggests that outcrop samples mighty be dried for 24 ~ 48 hours depending on the wetness of outcrop. The bright minerals could produce stable spectra with 10 times measurements as default value of the device under SWIR spectroscopy but the dark minerals would require about 10 seconds, which corresponds to 100 times measurements to get the reliable spectra. The position and shape 2,160 ~ 2,330 nm and/or other spectral features of hydrothermal alteration minerals by SWIR spectroscopy could be used for a classification of hydrothermal alteration zone in the field. Absorption peaks in 2,160 ~ 2180 nm are useful for identifying (advanced) argillic zone by spectral characteristics of kaoline, dickite, pyrophyllite, and alunite. Absorption peaks in 2,180 ~ 2,230 nm are able to define muscovite, sericite, and smectite, which are key alteration minerals in phyllic zone. Absorption peaks in 2,230 ~ 2,270 nm can be used to recognize prophylitic zone where chlorite and epidote occur. Absorption peaks of other principle minerals such as talc, serpentine, amphibole, and carbonate group are mainly detected within the wave length of 2,270 ~ 2,330 nm. This result indicates that the spectra of these minerals need to be carefully interpreted.

Element Dispersion and Wallrock Alteration Analysis Using Portable XRF and SWIR in the Samgwang Au Deposit (휴대용 XRF와 단파장적외선 분광분석을 이용한 삼광 금광상의 원소분산 및 모암변질 분석)

  • Kim, Junkyum;Shin, Dongbok;Yoo, Bongchul;Im, Heonkyung;Kim, Ilkyu
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Using portable XRF and SWIR analyzer, the characteristics of element dispersion and wallrock alterations induced by interaction between hydrothermal fluids and host rocks were investigated and ore exploration factors were estimated for the orogenic-type Samgwang Au deposits. On this purpose, in-situ measurements were conducted for 804 spots at regular intervals with a total of 4,824 times for host rocks, consisting of schist and gneiss, and altered wallrocks contacted with quartz veins in the Bonhang adit of the deposit, and the results were compared with quantitative data obtained by XRF and ICP analysis. The regression coefficients are 0.88 for major elements and 0.56 for trace elements, excluding V. For polished rock slabs, better results came out for major elements, 0.97 and for trace elements, 0.65. In altered wallrocks contacted with quartz veins, elements such as Fe, Zn, and Rb exhibit positive correlations with As in concentrations, while V forms a negative trend. Contour maps demonstrate that As, Zn, Rb, Fe, Ti, Cr, and Ni are enriched together near quartz veins, showing similar elemental behaviors. In-situ analysis using portable SWIR analyzer represents that schist and gneiss contain mica, illite, chlorite, sericite, amphibole, and epidote, while illite, sericite, gypsum, and mica are present in the altered rocks contacted with quartz veins. In contour maps, chlorite occurs mostly in host rocks, while sericite is concentrated near quartz veins. These results are similar to those of previous studies for element dispersion and hydrothermal alteration, and support the possibility for application of in-situ analysis on the exploration of orogenic gold deposit.

Methodology to Apply Low Spatial Resolution Optical Satellite Images for Large-scale Flood Mapping (대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법)

  • Piao, Yanyan;Lee, Hwa-Seon;Kim, Kyung-Tak;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.787-799
    • /
    • 2018
  • Accurate and effective mapping is critical step to monitor the spatial distribution and change of flood inundated area in large scale flood event. In this study, we try to suggest methods to use low spatial resolution satellite optical imagery for flood mapping, which has high temporal resolution to cover wide geographical area several times per a day. We selected the Sebou watershed flood in Morocco that was occurred in early 2010, in which several hundred $km^2$ area of the Gharb lowland plain was inundated. MODIS daily surface reflectance product was used to detect the flooded area. The study area showed several distinct spectral patterns within the flooded area, which included pure turbid water and turbid water with vegetation. The flooded area was extracted by thresholding on selected band reflectance and water-related spectral indices. Accuracy of these flooding detection methods were assessed by the reference map obtained from Landsat-5 TM image and qualitative interpretation of the flood map derived. Over 90% of accuracies were obtained for three methods except for the NDWI threshold. Two spectral bands of SWIR and red were essential to detect the flooded area and the simple thresholding on these bands was effective to detect the flooded area. NIR band did not play important role to detect the flooded area while it was useful to separate the water-vegetation mixed flooded classes from the purely water surface.