• Title/Summary/Keyword: SWEEP

Search Result 713, Processing Time 0.029 seconds

Effect of Blade Sweep on the Performance of the Wells Turbine for Wave Power Conversion (파력발전용 웰즈터빈성능에 미치는 날개 Sweep의 영향)

  • Kim, Tae-Ho;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.961-966
    • /
    • 2001
  • The Wells turbine is one of the simplest and most promising self-rectifying air turbines which are useful for the systems of alternative energy development in near future, and it is economically desirable from the point of view of the practical use, as well. To investigate the effect of blade sweep on the performance of the Wells turbine, computations of a fully 3-D Navier-Stokes are carried out under steady flow conditions of NACA0020 blade. It is known that the performance of the Wells turbine is considerably influenced by the blade sweep. An optimum blade sweep ratio(f=0.35) for the NACA0020 is found to be the most promising for the practical use, and this value is in good agreement with the previous experiments. It is also found that the overall turbine performance for the NACA0020 is better than that for the CA9.

  • PDF

A Study on the Sweep Surface Modeling for Reverse Engineering (역공학을 위한 Sweep 곡면 모델링에 관한 연구)

  • 임금주;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.426-429
    • /
    • 2001
  • Many various products are manufactured which have sculptured surfaces recently. Constructing surface of these models is required technique called reverse engineering. In reverse engineering, a product which has sculptured surfaces is measured and we create surface model to acquire complete model data of object. Measured point data needs preprocess and sampling. Next a set of point data in a plane fit section curve. At last, surface is generated by fitting to section curves. Here we uses sweep surface. Sweep surface is compatible fitting CAD model to drawing. This paper discusses converting approximation of NURBS surface as a standard surface.

  • PDF

Millimeter-wave Fast-sweep FM Reflectometry Applied to Plasma Density Profile Measurements

  • Kang, Wook-Kim
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2001
  • A fast-sweep broadband FM reflectometer system has been successfully developed and operacted at the DIII-D tokamak, producing reliable density Profiles with excellent spatial (1 $\leq$ cm) and temporal resolution (~100 $\mu$ s). The system uses a solid-state microwave oscillator and an active quadrupler, covering full Q-band frequencies (33~50 GHz) and providing relatively high output power (20~60 mW). The system hardware allows fu11band frequency sweep in 10 $\mu$ s, but due to digitization rate limit on DIII-D, sweep time was limited to 75~100 $\mu$ s. Fast frequency sweep has helped to reduce density fluctuation effects on the reflectometer phase measurements, thus improving reliability for individual sweeps. The fast-sweep system with high spatial and temporal resolution has allowed to measure fast-changing edge density profiles during plasma ELMS and L-H transitions, thus enabling fast-time sca1e physics studies.

  • PDF

Accelerating the Sweep3D for a Graphic Processor Unit

  • Gong, Chunye;Liu, Jie;Chen, Haitao;Xie, Jing;Gong, Zhenghu
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • As a powerful and flexible processor, the Graphic Processing Unit (GPU) can offer a great faculty in solving many high-performance computing applications. Sweep3D, which simulates a single group time-independent discrete ordinates (Sn) neutron transport deterministically on 3D Cartesian geometry space, represents the key part of a real ASCI application. The wavefront process for parallel computation in Sweep3D limits the concurrent threads on the GPU. In this paper, we present multi-dimensional optimization methods for Sweep3D, which can be efficiently implemented on the finegrained parallel architecture of the GPU. Our results show that the overall performance of Sweep3D on the CPU-GPU hybrid platform can be improved up to 4.38 times as compared to the CPU-based implementation.

System Performance Analysis for Multi-Band SweepSAR Operating Mode (다중대역 SweepSAR 운용 모드의 시스템 성능 분석)

  • Yoon, Seong-Sik;Lee, Jae-Wook;Lee, Taek-kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Kang, Eun-Su;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • In this paper, we analyze the main performance of satellite's Synthetic Aperture Radar system for high resolution and wide swath. We have used the radiation pattern of reflector antenna with array feed and comparison between the conventional ScanSAR mode and SweepSAR mode has been carried out. The SweepSAR mode is a high-resolution wide-swath mode that transmits beams over a wide range and receives echo signals through sequential beamforming based on SCORE(SCan On REceive). In this paper, we analyzed the operating principle and characteristics of satellite's SweepSAR mode and simulate system performances. In addition, in order to increase the utilization of image, performances analysis for multiple frequency bands(C-band, X-band) has been considered.

Numerical Study on the Hydrodynamic Performance of a Forward-Sweep Type Inducer for Turbopumps (터보펌프용 전진익형 인듀서의 성능에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.74-79
    • /
    • 2005
  • Computational studies on the hydrodynamic behavior of the forward-sweep inducers for the rocket-engine turbopump are presented in comparison with the conventional backward- sweep inducers. In the present study, two kinds of forward-sweep inducers are designed and numerically investigated. Forward-sweep inducers have bigger tip solidity compared to backward-sweep inducers even with shorter axial length due to their forward-sweep leading edge profiles. It is shown that back flows at the inlet decreases dramatically for forward- sweep inducers. And the low pressure region at the back flow are also decreased, which is assumed to promote the suction performance of the inducers. It seems that the hub located upstream of the tip at the leading edge induces pre whirl at the inlet blade tip for the backward sweep inducer. And this pre whirl leads to the big back flow.

Coordination Pattern of Upper Limb of Sweep Shot Movement in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 상지의 협응 형태)

  • Choi, Ji-Young;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.169-179
    • /
    • 2007
  • The purpose of this study was to investigate the relations between the segments of the body and to qualitatively analyze coordination pattern of joints and segments during Sweep Shot movement in Ice Hockey, by utilizing coordination variables was angle vs. angle plots. By the utilization the three dimensional anatomical angle cinematography, the angles of individual joint and segment according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. The three dimensional anatomical angular displacement and coordination pattern of trunk and Upper limb(shoulder-elbow, elbow-wrist linked system) showed important role of sweep shot in ice hockey. As the result of this paper, for the successful movement of sweep shot in ice hockey, it is most important role of coordination pattern of trunk-shoulder, shoulder-elbow and elbow-wrist. specially turnk movememt as a proximal segment. Coordination pattern of Upper Limb(upperarm-forearm-hand) of Sweep Shot movement in Ice Hockey that utilizes coordination variables seems to be one of useful research direction to understand basic control mechanisms of Ice hockey sweep shooting linked system skill. this study result showed flexion-extension, adduction-abduction and internal-external rotation of trunk are important role of power and shooting direction coordination pattern of upper Limb of Sweep Shot movement in Ice Hockey.

Magnetisation Reversal Dynamics in Epitaxial Fe/GaAs(001) and Fe/InAs(001) Thin Films

  • Lee, W.Y;Shin, K.H;Kim, H.J;Bland, J.A.C.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • We present the magnetisation reversal dynamics of epitaxial Fe thin films grown on GaAs(001) and InAs(001) studied as a function of field sweep rate in the range 0.01-160 kOe/s using magneto-optic Kerr effect (MOKE). For 55 and 250 ${\AA}$ Fe/GaAs(001), we find that the hysteresis loop area A follows the scaling relation $A\propto H_{\alpha} \;with\; \alpha=0.03\sim0.05$ at low sweep rates and 0.33~0.40 at high sweep rates. For the 150${\AA}$ Fe/InAs(001) film, $\alpha$is found to be ~0.02 at low sweep rates and ~0.17 at high sweep rates. The differing values of $\alpha$ are attributed to a change of the magnetisation reversal process with increasing sweep rate. Domain wall motion dominates the magnetisation reversal at low sweep rates, but becomes less significant with increasing sweep rate. At high sweep rates, the variation of the dynamic coercivity $H_c{^*}$ is attributed to domain nucleation dominating the reversal process. The results of magnetic relaxation studies for easy-axis reversal are consistent with the sweeping of one or more walls through the entire probed region (~100$\mu m$). Domain images obtained by scanning Kerr microscopy during the easy cubic axis reversal process reveal large area domains separated by zigzag walls.

  • PDF

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.

A Numerical Study of Blade Sweep Effect in Supersonic Turbine Rotor (초음속 터빈의 로터 블레이드 스윕 효과에 대한 수치적 연구)

  • Jeong, Soo-In;Jeong, Eun-Hwan;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.830-834
    • /
    • 2011
  • In this study, we performed three-dimensional CFD analysis to investigate the effect of the rotor blade sweep of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for three different sweep cases, No sweep(NSW), Backward sweep(BSW), and Forward sweep(FSW), using flow analysis program, $FLUENT^{TM}$ 6.3 Parallel. The results show that BSW model give the effect on the reducing of mass flow rates of tip leakage and the increasing of t-to-s efficiency.

  • PDF