• Title/Summary/Keyword: SWAT-K 모형

Search Result 242, Processing Time 0.03 seconds

Estimation of baseflow considering recession characteristics of hydrograph (수문곡선의 감수부 특성을 고려한 기저유출 산정)

  • Jung, Younghun;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • Recession of hydrograph gives a significant contribution to estimation of baseflow using rainfall-runoff models and baseflow separation methods, because recession affects baseflow. This study attempted to enhance the accuracy of streamflow predictions using a Soil and Water Assessment Tool (SWAT) model and to separate baseflow from the predicted streamflow. For this, this study used two scenarios: 1) to calibrate eleven parameters using an auto-calibration tool with the alpha factor obtained from RECESS (S1); and 2) to calibrate twelve SWAT parameters including alpha factor (one of SWAT parameters) using an auto-calibration tool (S2). Then, baseflow spearation from the predicted streamflow was conducted by using Web-based Hydrograph Analysis Tool (WHAT). The results show that there is no significant difference between Nash-Sutcliffe efficiency (NSE) values of S1 and S2 for calibrations to streamflow. However, calibrations to baseflow showed that NSEs are 0.777 for S1 and 0.844 for S2, which means a significant difference. Quantitatively compared to the observed streamflow, relative errors were 20.78 % for S1 and 6.59 % for S2. Finally, this study showed the importance of recession in baseflow separated from the predicted streamflow using a rainfall-runoff model.

Study on Spatially Runoff Simulation without Geological Information (지형정보 미구축 유역에 대한 유출모의 방안)

  • Kim, Nam-Won;Lee, Jeong-Eun;Lee, Byong-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.795-798
    • /
    • 2006
  • 국외의 경우 과거에 개발된 개념형 모형을 준분포형 모형으로 확장하고 GIS와 연계하여 모형을 적용하고 있으며, 이러한 경향은 이미 보편화되어 있다. 최근 국내 수자원 분야에서도 GIS를 이용한 모형의 적용이 많이 시도되어지고 있다. GIS와 연계된 모형을 이용할 경우, 기본입력자료로 DEM, 토지피복도, 토양도 등과 같은 수치주제도를 필요로 한다. 이러한 수치주제도는 전국 대분분 유역에 구축되어 있으나, 토양도의 경우 한강유역 휴전선 이북지역에 관한 정보가 아직 구축되어 있지 못한 실정이다. 따라서, 본 연구에서는 토양도의 공간적인 정보와 그 속성정보가 준분포형 모형인 SWAT-K 모형에서 유출량에 미치는 영향을 파악하고자 하였다. 대상유역으로는 충주댐 유역을 선정하였으며, 토양도의 속성정보는 3가지 시나리오(유역면적평균, 전국평균A, B)를 가정하였다. 대상유역을 10개의 소유역으로 구분하여, 토양도 미구축 유역이 증가함에 따라 3가지 속성정보 시나리오에 따른 연유출량의 오차를 검토하였다. 그 결과, 대상유역의 토양도 속성정보를 면적평균하여 적용한 경우 가장 작은 오차를 보임을 확인하였으며, 미구축 유역이 약 30, 60 %일 경우에 각각 1.4, 3.5 mm의 RMSE값을 나타내었다.

  • PDF

Effect of Improved Runoff Module in SWAT on Water Quality Simulation (SWAT 모형의 유출해석모듈 개선이 수질모의에 미치는 영향)

  • Kim, Nam-Won;Shin, Ah-Hyun;Lee, Jeong-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • For reliable water quality simulation by semi distributed model, accurate daily runoff simulation should have preceded. In this study, newly developed channel routing method which is nonlinear storage method is combination of Muskingum routing method and variable storage routing method and temporally weighted average curve number method were applied for effect analysis of water quality simulation. Developed modules, which are added in SWAT models and simulation, were conducted for the Chungju dam watershed. The simulation result by each module applied effect. As a result of analysis contribute water quality modeling, nonlinear storage method is more effective than temporally weighted average curve number method. Nutrient loading discharge was affected by development of runoff delaying from improvement of channel routing, because of characteristics of nonpoint source pollution.

Parameteric Assessment of Water Use Vulnerability of South Korea using SWAT model and TOPSIS (SWAT 모형과 TOPSIS 기법을 이용한 우리나라 물이용 취약성 평가)

  • Won, Kwyang Jai;Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.647-657
    • /
    • 2015
  • This study assessed the water use vulnerability for 12 basins of South Korea. The annual runoff of 12 basins are derived using a Soil and Water Assessment Tool (SWAT) and the calculated runoff per unit area and population are compared with each basin. The 18 indicators are selected in order to assess the vulnerability. Those are classified by aspects of demand, loss and supply of water use. Their weighting values used Entropy method to determine objective weights. To quantitatively assess the water use vulnerability, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) based on multi-criteria decision making are applied. The results show that the water availability vulnerability of Hyeongsan River has the highest value followed by Sapgyo River; Dongjin River; Seomjin River; Anseong River; Mangyung River; Nakdong River; Tamjin River; Youngsan River, Geum River; Taehwa River; and Han River. The result of this study has a capability to provide references for the index deveopment of climate change vulnerability assessment.

An Evaluation of Snowmelt Effects Using SWAT in Chungju Dam Basin (SWAT을 활용한 충주댐 유역의 융설 영향 평가)

  • Kim, Nam-Won;Lee, Byong-Ju;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.833-844
    • /
    • 2006
  • The objective of this study is to evaluate the snowmelt effects on the hydrological components, especially on the runoff, by using the soil water assessment tool(SWAT) which is a continuous semi-distributed long term rainfall-runoff model. The model was applied to the basin located in the upstream of the Chungju Dam. Some parameters in the snowmelt algorithm were estimated for the Chungju basin in order to reflect the snowmelt effects. The snowmelt effects were assessed by comparing the simulated runoff with the observed runoff data at the outlet of the basin. It was found out that the simulated runoff with considering the snowmelt component matches more satisfactorily to the observed one than without considering snowmelt effect. The simulation results revealed that the snowmelt effects were noticeable on March and April. Similar results were obtained at other two upstream gauging points. The effect of the elevation bands which distribute temperature and precipitation with elevation was analyzed. This study also showed that the snowmelt effect significantly affects the temporal distribution as well as quantity of the hydrological components. The simulated runoff was very sensitive to the change of temperature near the threshold temperature which the snowmelt can occur. However, the reason was not accounted for this paper, Therefore, further analyses related to this feature are needed.

Temporal and spatial characteristics of sediment yields in the Soyang Dam upstream watershed (소양댐 상류유역의 유사 발생에 대한 시공간적 특성)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2090-2094
    • /
    • 2008
  • 본 연구에서는 한강 상류의 소양댐 유역을 대상으로 SWAT-K 모형을 적용하여, 토지이용별, 하도구간별, 월별 및 연별 유사 발생을 비교 검토하였다. 모형 보정과 검증을 거쳐 대상유역에 대해 유출과 유사 모의의 정성적, 정량적 적용성을 검토하였으며, 이로부터 대상유역에서의 시공간적인 유사량 자료를 확보하였다. 확보된 유사량 자료를 이용하여 토지이용별 토양 유실량을 산정하고 기존 다른 연구자들의 결과와 비교함으로써 침식 영향을 판단할 수 있는 개략적인 평가를 하였다. 댐 상류로부터의 유입 유사량의 발생 원인 지역을 파악하기 위하여 모형으로부터 추정된 각 하도구간별 유사량을 오염원에 따라 점원, 비점원으로 구분하여 비교해 본 결과 비점원에 의한 영향이 99% 이상으로 나타났으며, 고랭지밭이 많이 분포한 자운천 상류유역을 제외하고는 대부분의 상류 소유역에서의 유사량이 작게 나타났다. 월별 유사량 분석 결과, 소양댐으로 유입되는 총 유사량의 88%가 여름철인 $7{\sim}9$월에 집중적으로 발생하는 것으로 나타났으며, 연도별 분석에서는 소양호의 고탁도가 문제가 되었던 2006년의 유사 발생이 다른 해에 비해 상대적으로 높은 것으로 나타났다.

  • PDF

Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models (SWAT 모형과 BFlow를 이용한 지하수 함양, 기저유출의 시공간적 변화 분석)

  • Lee, Ji Min;Park, Youn Shik;Jung, Younghun;Cho, Jaepil;Yang, Jae Eui;Lee, Gwanjae;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.549-558
    • /
    • 2014
  • Occurrence frequency of flood and drought tends to increase in last a few decades, leading to social and economic damage since the abnormality of climate changes is one of the causes for hydrologic facilities by exceedance its designed tolerance. Soil and Water Assessment Tool (SWAT) model was used in the study to estimate temporal variance of groundwater recharge and baseflow. It was limited to consider recession curve coefficients in SWAT model calibration process, thus the recession curve coefficient was estimated by the Baseflow Filter Program (BFLOW) before SWAT model calibration. Precipitation data were estimated for 2014 to 2100 using three models which are GFDL-ESM2G, IPSL-CM5A-LR, and MIROC-ESM with Representative Concentration Pathways (RCP) scenario. SWAT model was calibrated for the Soyang watershed with NSE of 0.83, and $R^2$ of 0.89. The percentage to precipitation of groundwater recharge and baseflow were 27.6% and 17.1% respectively in 2009. Streamflow, groundwater recharge, and baseflow were estimated to be increased with the estimated precipitation data. GFDL-ESM2g model provided the most large precipitation data in the 2025s, and IPSL-CM5A-LR provided the most large precipitation data in the 2055s and 2085s. Overall, groundwater recharge and baseflow displayed similar trend to the estimated precipitation data.

Outlook Analysis of Future Discharge According to Land Cover Change Using CA-Markov Technique Based on GIS (GIS 기반 CA-Markov 기법을 이용한 토지피복 변화에 따른 미래 유출량 전망 분석)

  • Park, Jin-Hyeog;No, Sun-Hee;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.25-39
    • /
    • 2013
  • In this study, the change of the discharge according to the land cover change which acts as one of dominant factors for the outlook of future discharge was analyzed using SWAT(Soil and Water Assessment Tool) model for Yongdam and Daecheong Dam Watershed in the Geum River Basin. The land cover maps generated by Landsat TM satellite images in the past 1990 and 1995 were used as observed data to simulate the land cover in 2000 by CA-Markov serial technique and after they were compared and verified, the changes of land cover in 2050 and 2100 in the future were simulated. The discharge before and after the change of land cover by using input data of SWAT model was compared and analyzed under the A1B scenario. As a result of analyzing the trend in the elapses of year on the land cover in the Geum River Basin, the forest and rice paddy class area steadily decreased while the urban, bare ground and grassland classes increased. As a result of analyzing the change of discharge considering the future change of the land cover, it appeared that the discharge considering the change of land cover increases by 1.83~2.87% on the whole compared to the discharge not considering the change of land cover.

Simulation on Runoff of Rivers in Jeju Island Using SWAT Model (SWAT 모형을 이용한 제주도 하천의 유출량 모의)

  • Jung, Woo-Yul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1045-1055
    • /
    • 2009
  • The discharge within the basin in Jeju Island was calculated by using SWAT model, which a Semi-distributed rainfall-runoff model to the important rivers. The basin of Chunmi river of the eastern region of Jeju Island, as the result of correcting as utilizing direct runoff data of 2 surveys, appeared the similar value to the existing basin average runoff rate as 22% of average direct runoff rate for the applied period. The basin of Oaedo river of the northern region showed $R^2$ of 0.93, RMSE of 14.92 and ME of 0.70 as the result of correcting as utilizing runoff data in the occurrence of 7 rainfalls. The basin of Ongpo river of the western region showed $R^2$ of 0.86, RMSE of 0.62 and ME of 0.56 as the result of correcting as utilizing runoff data except for the period of flood in $2002{\sim}2003$. Yeonoae river of the southern region showed $R^2$ of 0.85, RMSE of 0.99 and ME of 0.83 as the result of correcting as utilizing runoff data of 2003. As the result of calculating runoff for the long term about 4 basins of Jeju Island from the above results, SWAT model wholly appears the excellent results about the long-term daily runoff simulation.