DOI QR코드

DOI QR Code

An Evaluation of Snowmelt Effects Using SWAT in Chungju Dam Basin

SWAT을 활용한 충주댐 유역의 융설 영향 평가

  • 김남원 (한국건설기술연구원 수자원연구부) ;
  • 이병주 (한국건설기술연구원 수자원연구부) ;
  • 이정은 (한국건설기술연구원 수자원연구부)
  • Published : 2006.10.01

Abstract

The objective of this study is to evaluate the snowmelt effects on the hydrological components, especially on the runoff, by using the soil water assessment tool(SWAT) which is a continuous semi-distributed long term rainfall-runoff model. The model was applied to the basin located in the upstream of the Chungju Dam. Some parameters in the snowmelt algorithm were estimated for the Chungju basin in order to reflect the snowmelt effects. The snowmelt effects were assessed by comparing the simulated runoff with the observed runoff data at the outlet of the basin. It was found out that the simulated runoff with considering the snowmelt component matches more satisfactorily to the observed one than without considering snowmelt effect. The simulation results revealed that the snowmelt effects were noticeable on March and April. Similar results were obtained at other two upstream gauging points. The effect of the elevation bands which distribute temperature and precipitation with elevation was analyzed. This study also showed that the snowmelt effect significantly affects the temporal distribution as well as quantity of the hydrological components. The simulated runoff was very sensitive to the change of temperature near the threshold temperature which the snowmelt can occur. However, the reason was not accounted for this paper, Therefore, further analyses related to this feature are needed.

본 연구는 준 분포형 장기유출모형인 SWAT모형을 이용하여 융설모의에 따른 유출 및 수문성분의 영향을 분석하고자 하는데 그 목적이 있다. 대상유역으로는 충주댐 유역을 선정하였으며 융설 매개변수를 산정하였다. 충주댐지점에서의 관측유량과 융설모의 전후의 모의유량을 비교한 결과 융설모의를 수행한 유출거동이 관측치와 유사하게 모의되었으며, 특히 3, 4월에 융설 영향이 큰 것으로 나타났다. 상류유역 2개 지점에 대해서도 유사한 결과를 보였다. 또한, 융설 모의시 표고밴드 설정에 따른 영향을 분석하였으며, 융설 고려에 따른 각 수문성분들이 시간적, 양적으로 다른 거동을 보이는 것을 제시하였다. 다만, 융설 모의시 융설 발생 임계온도 전후의 온도변화에 따라 유출량이 민감하게 반응하는 문제가 도출되었으며, 이는 향후 연구를 통해 개선되어야 할 것으로 판단된다.

Keywords

References

  1. 건설교통부 (2002). 수자원단위지도 구축
  2. 건설교통부 (2006). 수자원장기종합계획(2006-2020), pp.8
  3. 과학기술부 (2004). 수자원의 지속적 확보기술개발사업-지표수 수문성분 해석기술 개발 보고서, 한국건설 기술연구원
  4. 김남원 (1998). '수문관측현황과 개선방향-수위, 우량 관측을 중심으로.' 건설기술정보지, 한국건설기술연구원, 7월호, pp. 9-15
  5. 김남원, 원유승 (2004a). 'SWAT-SWMM 결합모형의 개발-(II) 모형의 특정 및 평가' 한국수자원학회논문집, 한국수자원학회, 제37권, 제7호, pp. 599-612
  6. 김남원, 정일문, 원유승 (2004b). 'SWAT-MODFLOW 결합모형-(II) 모형의 평가' 한국수자원학회논문집, 한국수자원학회, 제37권, 제6호, pp. 499-507
  7. 배덕효, 오재호 (1998) '장기 유출해석에서의 융설영향에 관한 기초연구.' 한국수자원학회논문집, 한국수자원학회, 제31권, 제6호, pp. 883-844
  8. 이상호, 안태진, 윤병만, 심명필 (2003). '적설 및 융설 모의를 포함한 탱크모형의 소양강댐 및 충주댐에 대한 적용.' 한국수자원학회논문집, 한국수자원학회, 제36권, 제5호, pp. 851-861
  9. Anderson, E.A., (1973). 'National Weather Service River Forecast System - Snow Accumulation and Ablation Model.' NOAA Technical Memorandum NWS Hydro, Vol. 17, US Department of Commerce, Washington, DC pp. 217
  10. Bengston, L., (1981). Snowmelt-generated runoff in urban areas, pp. 444-451. In B.C. Yen (ed.) Urban stormwater hydraulics and hydrology: proceedings of the Second International Conference on Urban Storm Drainage, held at Urbana, Illinois, USA, 15-19 June 1981. Water Resources Publications, Littleton, CO
  11. Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., Hotchkiss, R.H. (2002). 'Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool(SWAT).' Journal of Hydrology, vol. 262, pp. 209-223 https://doi.org/10.1016/S0022-1694(02)00029-X
  12. Hartman, M.D., Baron, J.S., Lammers, R.B., Cline, D.W., Band, L.E., Liston, G.E., Tague, C., (1999). 'simulations of snow distribution and hydrology in a mountain basin.' Water Resources Research, 35(5), pp. 1587-1603 https://doi.org/10.1029/1998WR900096
  13. Huber, W.C., Dickinson, R.E., (1988). Storm water management model, version 4: user's manual. U.S. Environmental Protection Agency, Athens, GA
  14. Neitsch, S.L., Arnord, J.G., Kiniry, J.R., Williams, J.R., (2001). Soil and Water Assessment Tool - Theoretical Documentation
  15. Shook, K., Gray, D.M., (1997). 'Synthesizing shallow seasonal snow cover.' Water Resources Research 33(3), pp. 419-426 https://doi.org/10.1029/96WR03532
  16. Westerstrom, G., (1981). Snowmelt runoff from urban plot, pp. 452-459. In B.G. Yen (ed.) Urban stormwater hydraulics and hydrology: proceedings of the Second International Conference on Urban Storm Drainage, held at Urbana, Illinois, USA, 15-19 June 1981. Water Resources Publications, Littleton, CO

Cited by

  1. Assessment of Climate Change Impacts on Hydrology and Snowmelt by Applying RCP Scenarios using SWAT Model for Hanriver Watersheds vol.55, pp.5, 2013, https://doi.org/10.5389/KSAE.2013.55.5.037
  2. Non-Parametric Low-Flow Frequency Analysis Using RCPs Scenario Data : A Case Study of the Gwangdong Storage Reservoir, Korea vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1125
  3. Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.301
  4. One-month lead dam inflow forecast using climate indices based on tele-connection vol.49, pp.5, 2016, https://doi.org/10.3741/JKWRA.2016.49.5.361
  5. Snow Melting Simulation of Gwangdong Dam Basin in the Spring Season Using Developed K-DRUM Model vol.32, pp.6B, 2012, https://doi.org/10.12652/Ksce.2012.32.6B.355
  6. Application of K-DRUM Model for Pakistan Kunhar River Basin Considering Long-term Snow Melt and Cover vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2237
  7. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea vol.401, pp.1-2, 2011, https://doi.org/10.1016/j.jhydrol.2011.02.012