• Title/Summary/Keyword: SWAT (soil and water assessment tool)

Search Result 281, Processing Time 0.029 seconds

SIMULATION OF DAILY RUNOFF AND SENSITIVITY ANALYSIS WITH SOIL AND WATER ASSESSMENT TOOL

  • Lee, Do-Hun;Kim, Nam-Won;Kim, In-Ho
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.133-146
    • /
    • 2004
  • Soil and water assessment tool (SWAT) was simulated based on the default parameters and a priori soil parameter estimation method in Bocheong watershed of Korea. The performance of the model was tested against the measured daily runoff data for 5 years between 1993 and 1997. The sensitivity analysis of SWAT model parameters was conducted to identify the most sensitive model parameters affecting the model output. The results of SWAT simulation indicate that the overall performance of SWAT in calculating daily runoff is reasonably acceptable. However, there is a problem in estimating the low flow components of streamflow since the low flow components simulated by SWAT are significantly different from the measured low flow. The sensitivity analysis with SWAT points out that soil related parameters are the most sensitive parameters affecting surface and ground water balance components and groundwater flow related parameters exhibit negligible sensitivity.

  • PDF

In respect to Water Yield, Hydrologic Response Units'(HRU) effect in Soil and Water Assessment Tool (SWAT) (SWAT모형에서의 유출량에 대한 HRU의 영향)

  • 권명준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.349-352
    • /
    • 1998
  • In many circumstances, it is infeasible to simulate the daily water yield in every land use or soil type of the watershed or river basin. These situations can be simulated in“Soil and Water Assessment Tool”(SWAT) using a concept called“hydrologic response units”(HRU's) within a topographically-defined subbasin. Soil water balance, crop growth, nutrient cycling management, etc., are simulated for each HRU For the watershed of Bok-ha river, the effect of HRU's in SWAT has been studied in respect to water yield. The optimum number of HRU's was 23 based in data capacity and correlation coefficient.

  • PDF

Water Quality Modeling in the Delaware River Basin by SWAT(Soil and Water Assessment Tools) (SWAT를 이용한 델라웨어강 유역의 수질모델링)

  • Cho, Sung-Min;Lee, Myung-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.39-57
    • /
    • 1995
  • The water quality model SWAT (Soil and Water Assessment Tool) was used in combination with GIS, Arc/Info and GRASS, to evaluate land use impacts in the Delaware River Basin in Pennsylvania. This paper describes application of GIS with the water quality model in the 250 square kilometer Brodhead Creek Watershed. Date used in water quality modeling include 1:250,000 digital elevation models (DEM), soil data, and monitored streamflow and curve numbers, and other input variables.

  • PDF

Comparison of Soil Loss Estimation using SWAT and SATEEC (SWAT과 SATEEC 모형을 이용한 토양유실량 비교)

  • Park, Youn-Shik;Kim, Jong-Gun;Heo, Sung-Gu;Kim, Nam-Won;Lim, Kyung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1295-1299
    • /
    • 2008
  • Soil erosion is a natural process and has been occurring in most areas in the watershed. However, accelerated soil erosion rates have been causing numerous environmental impacts in recent years. To reduce soil erosion and sediment inflow into the water bodies, site-specific soil erosion best management practices (BMPs) need to be established and implemented. The most commonly used soil erosion model is the Universal Soil Loss Equation (USLE), which have been used in many countries over 30 years. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView GIS system has been developed and enhanced to estimate the soil erosion and sediment yield from the watershed using the USLE input data. In the last decade, the Soil and Water Assessment Tool (SWAT) model also has been widely used to estimate soil erosion and sediment yield at a watershed scale. The SATEEC system estimates the LS factor using the equation suggested by Moore and Burch, while the SWAT model estimates the LS factor based on the relationship between sub watershed average slope and slope length. Thus the SATEEC and SWAT estimated soil erosion values were compared in this study. The differences in LS factor estimation methods in the SATEEC and SWAT caused significant difference in estimated soil erosion. In this study, the difference was -51.9%(default threshold)$\sim$-54.5%(min. threshold) between SATEEC and non-patched SWAT, and -7.8%(default threshold)$\sim$+3.8%(min. threshold) between SATEEC and patched SWAT estimated soil erosion.

  • PDF

Comparison of Soil Loss Estimation using SWAT and SATEEC (SWAT과 SATEEC 모형을 이용한 토양유실량 비교)

  • Park, Youn-Shik;Kim, Jong-Gun;Heo, Sung-Gu;Kim, Nam-Won;Ahn, Jae-Hun;Park, Joon-Ho;Kim, Ki-Sung;Lim, Kyung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.3-12
    • /
    • 2008
  • Soil erosion is a natural process and has been occurring in most areas in the watershed. However, accelerated soil erosion rates have been causing numerous environmental impacts in recent years. To reduce soil erosion and sediment inflow into the water bodies, site-specific soil erosion best management practices(BMPs) need to be established and implemented. The most commonly used soil erosion model is the Universal Soil Loss Equation(USLE), which have been used in many countries over 30 years. The Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS system has been developed and enhanced to estimate the soil erosion and sediment yield trom the watershed using the USLE input data. In the last decade, the Soil and Water Assessment Tool(SWAT) model also has been widely used to estimate soil erosion and sediment yield at a watershed scale. The SATEEC system estimates the LS factor using the equation suggested by Moore and Burch, while the SWAT model estimates the LS factor based on the relationship between sub watershed average slope and slope length. Thus the SATEEC and SWAT estimated soil erosion values were compared in this study. The differences in LS factor estimation methods in the SATEEC and SWAT caused significant difference in estimated soil erosion. In this study, the difference was -51.9%(default threshold)${\sim}-54.5%$(min. threshold) between SATEEC and non-patched SWAT, and -7.8%(default threshold)${\sim}+3.8%$(min. threshold) between SATEEC and patched SWAT estimated soil erosion.

Optimal Rain Gauge Density and Sub-basin Size for SWAT Model Application (SWAT 모형의 적용을 위한 적정 강우계밀도의 추정)

  • Yoo, Chul-Sang;Kim, Kyoung-Jun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.415-425
    • /
    • 2005
  • This study estimated the optimal rain gauge density and sub-basin size for the application of a daily rainfall-runoff analysis model called SWAT (Soil and Water Assessment Tool). Simulated rainfall data using a WGR multi-dimensional precipitation model (Waymire et al., 1984) were applied to SWAT for runoff estimation, and then the runoff error was analyzed with respect to various rain gauge density and sub-basin size. As results of the study, we could find that the optimal sub-basin size and the representative area of one rain gauge are similar to be about $80km^2$ for the Yong-Dam dam basin.

Development of SWAT SD-HRU Pre-processor Module for Accurate Estimation of Slope and Slope Length of Each HRU Considering Spatial Topographic Characteristics in SWAT (SWAT HRU 단위의 경사도/경사장 산정을 위한 SWAT SD-HRU 전처리 프로세서 모듈 개발)

  • Jang, Wonseok;Yoo, Dongsun;Chung, Il-moon;Kim, Namwon;Jun, Mansig;Park, Younshik;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.351-362
    • /
    • 2009
  • The Soil and Water Assessment Tool (SWAT) model, semi-distributed model, first divides the watershed into multiple subwatersheds, and then extracts the basic computation element, called the Hydrologic Response Unit (HRU). In the process of HRU generation, the spatial information of land use and soil maps within each subwatershed is lost. The SWAT model estimates the HRU topographic data based on the average slope of each subwatershed, and then use this topographic datum for all HRUs within the subwatershed. To improve the SWAT capabilities for various watershed scenarios, the Spatially Distributed-HRU (SD-HRU) pre-processor module was developed in this study to simulate site-specific topographic data. The SD-HRU was applied to the Hae-an watershed, where field slope lengths and slopes are measured for all agricultural fields. The analysis revealed that the SD-HRU pre-processor module needs to be applied in SWAT sediment simulation for accurate analysis of soil erosion and sediment behaviors. If the SD-HRU pre-processor module is not applied in SWAT runs, the other SWAT factors may be over or under estimated, resulting in errors in physical and empirical computation modules although the SWAT estimated flow and sediment values match the measured data reasonably well.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

Water quality and runoff simulation in the Jiseok Stream Basin using SWAT Model (SWAT 모형을 이용한 지석천 유역의 수질 및 유량 모의)

  • Park, Sung-Chun;Yang, Dong-Hyun;Jin, Young-Hoon;Kim, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2014-2017
    • /
    • 2009
  • 유출량과 수질자료는 하천을 관리하는데 있어 필수적인 수문자료이다. 미계측 유역의 경우 유출량은 면적비유량법 및 강우-유출모형을 통해서 유출량을 산정하고 있다. 강우-유출 모형에는 HEC-1, HEC-HMS, SWMM등의 여러 가지 모형이 쓰이고 있으며, 수질자료는 Qual2K, Qual2E 등의 모델을 이용하여 자료를 산출하고 있다. 기존의 모델들은 토지이용과 토양의 특성을 반영하기 어렵다. 토지이용과 토양의 특성을 반영하기 어려웠던 기존의 모형과는 달리 SWAT(Soil And Water Assessment Tool) 모형의 경우 GIS(Geographic Information system)를 이용함으로써 정확한 토지이용과 토양특성을 적용할 수 있다는 장점이 있으며, 시 공간적 변화를 고려할 수 있다. 또한, 유역을 소유역으로 세분화함으로써 수문학적 응답 단위(Hydrologic Response unit : HRU)로 계산이 가능하여 더욱 세밀한 모의가 가능하다. 본 연구에서는 SWAT모형을 전남 나주시와 화순군에 걸쳐 흐르는 지석천 유역에 적용하여 유출량과 수질을 모의함으로써 실제유역과 유사한 물리적 모의를 실행하였다. 그 결과 SWAT모형이 대상지역의 부하량과 유출량 모의에 높은 적용성을 나타냈다.

  • PDF

Application and Effectiveness Analysis of SWAT Filter Strip in Golji Watershed (골지천 유역의 최적관리기법 적용에 따른 수질개선효과 분석)

  • Park, Youn Shik;Kwon, Jae Hyouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • BACKGROUND: Best management practices are often implemented to control nonpoint source pollutants. Best management practices need to be simulated and analyzed for effective Best management practices implementations. Filter strip is one of effective Best management practices in agricultural areas. METHODS AND RESULTS: Soil and Water Assessment Tool model was selected to explore the effectiveness of filter strip to control total phosphorous in Golji watershed. Soil and Water Assessment Tool model was calibrated for flow and total phosphorous by Sequential Uncertainty Fittin ver.2 algorithm provided in Soil and Water Assessment Tool-Calibration and Uncertainty Procedures. Three scenarios defined by filter strip width were applied. The filter strip width of 5 m was able to reduce the most amount of total phosphorous. In other words, the total phosphorous reduction by filter strip of 5 m was 28.0%, while the reduction was 17.5% by filter strip of 1 m. However, the reduction per unit filter strip width were 17.4%, 8.0%, and 4.5% for 1 m, 3 m, and 5 m of filter strips, respectively. CONCLUSION: Best management practices need to be simulated and analyzed so that the BMP scenario can be cost-effective. A large size of BMP might be able to control large amount of pollutants, however it would not be indicated as a cost-effective strategy.