• Title/Summary/Keyword: SW620 cells

Search Result 23, Processing Time 0.025 seconds

Expression of the Proto-oncogene Pokemon in Colorectal Cancer - Inhibitory Effects of an siRNA

  • Zhao, Gan-Ting;Yang, Li-Juan;Li, Xi-Xia;Cui, Hui-Lin;Guo, Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4999-5005
    • /
    • 2013
  • Objective: This study aimed to investigate expression of the proto-oncogene POK erythroid myeloid ontogenic factor (Pokemon) in colorectal cancer (CRC), and assess inhibitory effects of a small interference RNA (siRNA) expression vector in SW480 and SW620 cells. Methods: Semi-quantitative reverse transcription-polymerase chain reaction (PCR) and immunohistochemistry were performed to determine mRNA and protein expression levels of Pokemon in CRC tissues. Indirect immunofluorescence staining was applied to investigate the location of Pokemon in SW480 and SW620 cells. The siRNA expression vectors that were constructed to express a short hairpin RNA against Pokemon were transfected to the SW480 and SW620 cells with a liposome. Expression levels of Pokemon mRNA and protein were examined by real-time quantitative-fluorescent PCR and western blot analysis. The effects of Pokemon silencing on proliferation of SW480 and SW620 cells were evaluated with reference to growth curves with MTT assays. Results: The mRNA expression level of Pokemon in tumor tissues ($0.845{\pm}0.344$) was significantly higher than that in adjacent tumor specimens ($0.321{\pm}0.197$). The positive expression ratio of Pokemon protein in CRC (87.0%) was significantly higher than that in the adjacent tissues (19.6%). Strong fluorescence staining of Pokemon protein was observed in the cytoplasm of the SW480 and SW620 cells. The inhibition ratios of Pokemon mRNA and protein in the SW480 cells were 83.1% and 73.5% at 48 and 72 h, respectively, compared with those of the negative control cells with the siRNA. In the SW620 cells, the inhibition ratios of Pokemon mRNA and protein were 76.3% and 68.7% at 48 and 72 h, respectively. MTT showed that Pokemon gene silencing inhibited the proliferation of SW480 and SW620 cells. Conclusion: Overexpression of Pokemon in CRC may have a function in carcinogenesis and progression. siRNA expression vectors could effectively inhibit mRNA and protein expression of Pokemon in SW480 and SW620 cells, thereby reducing malignant cell proliferation.

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

Effect of Tetrodotoxin on the Proliferation and Gene Expression of Human SW620 Colorectal Cancer Cells

  • Bae, Yun-Ho;Kim, Hun;Lee, Sung-Jin
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Tetrodotoxin (TTX) is a natural neurotoxin found in several species of puffer fish belonging to Tetraodon fugu genus and has been reported to affect processes such as proliferation, metastasis and invasion of various cancer cells. However, it was not revealed which genes were influenced by these reactions. In this experiment, it was examined in human SW620 colorectal cancer cells. The proliferation of SW620 cells was significantly reduced when treated with 0, 1, 10 and 100 μM TTX for 48 h. It was confirmed using Annexin V-propidium iodide staining that some apoptosis was induced. Differentially expressed genes (DEGs) affecting cell proliferation through RNA sequencing (RNA-seq) were selected. The expression change of DEGs was confirmed by conducting quantitative real-time polymerase chain reaction (qRT-PCR). As a result, the mRNA expression of FOS and WDR48 genes was found to be increased in the 100 μM TTX treatment group compared to the control group. On the other hand, the mRNA expression of ALKBH7, NDUFA13, RIPPLY3 and SELENOM genes was found to be reduced, and in the case of the ALKBH7 gene was identified to show significant differences. This experiment suggests that TTX can be used as an important fundamental data to elucidate the mechanism that inhibits the proliferation of SW620 cells.

MiR-133b Acts as a Tumor Suppressor and Negatively Regulates TBPL1 in Colorectal Cancer Cells

  • Xiang, Kai-Min;Li, Xiao-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3767-3772
    • /
    • 2014
  • Introduction: MicroRNAs have emerged as post-transcriptional regulators that are critically involved in tumorigenesis. This study was designed to explore the effect of miRNA 133b on the proliferation and expression of TBPL1 in colon cancer cells. Methods: Human colon cancer SW-620 cells and human colon adenocarcinoma HT-29 cells were cultured. MiRNA 133b mimcs, miRNA 133b inhibitors, siRNA for TBPL1 and scrambled control were synthesized and transfected into cells. MiR-133b levels in cells and CRC tumor tissue was measured by real-time PCR. TBPL1 mRNA was detected by RT-PCR. Cell proliferation was studied with MTT assay. Western blotting was applied to detect TBPL1 protein levels. Luciferase assays were conducted using a pGL3-promoter vector cloned with full length of 3'UTR of human TBPL1 or 3'UTR with mutant sequence of miR-133b target site in order to confirm if the putative binding site is responsible for the negative regulation of TBPL1 by miR-133b. Results: Real time PCR results showed that miRNA 133b was lower in CRC tissue than that in adjacent tissue. After miR-133b transfection, its level was elevated till 48h, accompanied by lower proliferation in both SW-620 and HT-29 cells. According to that listed in http://www.targetscan.org, the 3'-UTR of TBPL1 mRNA (NM_004865) contains one putative binding site of miR-133b. This site was confirmed to be responsible for the negative regulation by miR-133b with luciferase assay. Further, Western blotting and immunohistochemistry both indicated a higher TBPL1 protein expression level in CRC tissue. Finally, a siRNA for TBPL1 transfection obviously slowed down the cell proliferation in both SW-620 and HT-29 cells. Conclusion: MiR-133b might act as a tumor suppressor and negatively regulate TBPL1 in CRC.

Effects of Conjugated Linoleic Acid (CLA) on Matrix Metalloproteinase (MMP) Activity and Cell Motility in Human Colon Cancer Cell Lines (Conjugated Linoleic Acid (CLA)가 인체 대장암 세포주에서 Matrix Metalloproteinase (MMP) 활성과 세포이동성에 미치는 영향)

  • 설소미;방명희;최옥숙;윤정한;김우경
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.280-286
    • /
    • 2003
  • Conjugated linoleic acid (CLA) consists of several geometric isomers of linoleic acid. CLA is found in foods derived from ruminants and exhibits strong anticarcinogenic effects in a variety of animal models. Matrix metalloproteinases (MMPs) play a key role in cancer progression. Specifically, MMP-2 and -9, which hydrolyze the basal membrane type IV collagen, are involved in the initial breakdown of collagen and basement membrane components during tumor growth and invasion. However, the effects of CLA on cancer cell motility and MMP expression and activity are not currently well known. Therefore, the present study examined whether CLA reduces the activity of MMP and cell motility in SW480 and SW620 cells, the human colon cancer cell lines. Gelatin zymography and Western blot analysis revealed that phorbol 12-myristate 13-acetate (PMA) induced the activity and protein expression of Mr 92,000 MMP-9 in both cell lines. To examine whether CLA inhibits the MMP activity, cells were incubated with 100 ngfmL PMA in the presence of various concentrations of CLA. PMA-induced MMP-9 activity was decreased by 20 $\mu$ M CLA in SW480 cells, and by 10 $\mu$ M and 20 $\mu$ M CLA in SW620 cells. Results from the Hoyden chamber assay showed that cell motility was increased by PMA and that PMA-induced cell motility was significantly decreased by 20 $\mu$ M CLA in SW480 cells. These results indicate that CLA may reduce the motility and MMP activity in human colon cancer cells.

Propolis from the Stingless Bee Trigona incisa from East Kalimantan, Indonesia, Induces In Vitro Cytotoxicity and Apoptosis in Cancer Cell lines

  • Kustiawan, Paula M;Phuwapraisirisan, Preecha;Puthong, Songchan;Palaga, Tanapat;Arung, Enos T;Chanchao, Chanpen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6581-6589
    • /
    • 2015
  • Background: Previously, stingless bee (Trigona spp.) products from East Kalimantan, Indonesia, were successfully screened for in vitro antiproliferative activity against human cancer derived cell lines. It was established that propolis from T. incisa presented the highest in vitro cytotoxicity against the SW620 colon cancer cell line (6% cell survival in $20{\mu}g/mL$). Materials and Methods: Propolis from T. incisa was extracted with methanol and further partitioned with n-hexane, ethyl acetate and methanol. The in vitro cytotoxicity of the extracts was assessed by the MTT assay against human colon (SW620), liver (Hep-G2), gastric (KATO-III), lung (Chago) and breast (BT474) cancer derived cell lines. The active fractions were further enriched by silica gel quick column, absorption and size exclusion chromatography. The purity of each fraction was checked by thin layer chromatography. Cytotoxicity in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by MTT assay, induction of cell cycle arrest and cell death by flow cytometric analysis of propidium iodide and annexin-V stained cells. Results: A cardol isomer was found to be the major compound in one active fraction (F45) of T. incisa propolis, with a cytotoxicity against the SW620 ($IC_{50}$ of $4.51{\pm}0.76{\mu}g/mL$), KATO-III (IC50 of $6.06{\pm}0.39{\mu}g/mL$), Hep-G2 ($IC_{50}$ of $0.71{\pm}0.22{\mu}g/mL$), Chago I ($IC_{50}$ of $0.81{\pm}0.18{\mu}g/mL$) and BT474 (IC50 of $4.28{\pm}0.14{\mu}g/mL$) cell lines. Early apoptosis (programmed cell death) of SW620 cells was induced by the cardol containing F45 fraction at the $IC_{50}$ and $IC_{80}$ concentrations, respectively, within 2-6 h of incubation. In addition, the F45 fraction induced cell cycle arrest at the G1 subphase. Conclusions: Indonesian stingless bee (T. incisa) propolis had moderately potent in vitro anticancer activity on human cancer derived cell lines. Cardol or 5-pentadecyl resorcinol was identified as a major active compound and induced apoptosis in SW620 cells in an early period (${\leq}6h$) and cell cycle arrest at the G1 subphase. Thus, cardol is a potential candidate for cancer chemotherapy.

MicroRNA-451 Inhibits Growth of Human Colorectal Carcinoma Cells via Downregulation of Pi3k/Akt Pathway

  • Li, Hong-Yan;Zhang, Yan;Cai, Jian-Hui;Bian, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3631-3634
    • /
    • 2013
  • MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.

Anticancer Effect of Activated Natural Killer Cells on Human Colorectal Tumor (결장암에 대한 활성 자연살해세포의 항암효능)

  • Sung, Hye-Ran;Kim, Jee-Youn;Park, Min-Gyeong;Kim, Il-Hoi;Lee, Dong-Wook;Han, Sang-Bae;Lee, Chong-Kil;Song, Suk-Gil
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.192-199
    • /
    • 2010
  • Colorectal cancer is one of the most common alimentary malignancies. In this study, the antitumor activity of activated human natural killer (NK) cells against human colorectal cancer was evaluated in vivo. Human NK cells are the key contributors of innate immune response and the effective functions of these cells are enhanced by cytokines. Human peripheral blood mononuclear cells (PBMC) were cultured with interleukin-2 (IL-2)-containing medium for 14 days and resulted in enriched NK cell population. The resulting populations of the cells comprised 7% $CD3^+CD4^+$ cells, 25% $CD3^+CD8^+$ cells, 13% $CD3^-CD8^+$ cells, 4% $CD3^+$CD16/$CD56^+$ cells, 39% $CD3^+$CD16/$CD56^-$ cells, and 52% $CD3^-$CD16/$CD56^+$ cells. Tumor necrosis factor alpha (TNF-$\alpha$), interferon gamma (IFN-$\gamma$), IL-2, IL-4, and IL-5 transcripts of the activated NK cells were confirmed by RT-PCR. In addition, activated NK cells at doses of 2.5, 5 and 10 million cells per mouse inhibited 10%, 34% and 47% of SW620-induced tumor growth in nude mouse xenograft assays, respectively. This study suggests that NK cell-based immunotherapy may be used as an adoptive immunotherapy for colorectal cancer patients.

The Cytotoxic Effect of the Gleditsiae Semen Extracts on Human Colon Carcinoma Cells (조각인(Gleditsiae Semen) 추출물의 대장암 세포주에 대한 세포독성효과)

  • Cha, Mi-Ran;Yoon, Mi-Young;Kim, Ju-Young;Hwang, Ji-Hwan;Park, Hae-Ryong
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.248-253
    • /
    • 2006
  • The present study describes the preliminary evaluation of the cytotoxicity from Gleditsiae Semen extracts. G. Semen was extracted with methanol, ethanol, and acetone, and then cytotoxic effect of these extracts was measured by the MTT reduction assay and phase-contrast microscopy on the HT-29 human colon carcinoma cells. Among these extracts, methanol extract showed the highest cytotoxic activity on the HT-29 cells. The methanol extract was further fractionated with n-hexane, diethyl ether, ethyl acetate, and water layer according to the degree of polarity. The water layer showed the highest inhibitory activity on the growth of HT-29 cells, but the other fractions indicated the low cytotoxic activity. In addition, water layer also showed the cytotoxic activity against SW620 human colon carcinoma cells. Based on these results, we suggest that extracts of G. Semen may contain bioactive materials and are potential candidates as chemotherapeutic agents against human colon carcinoma cells.

The Anticancer Effect of Extracts from Vitex rotundifolia on Human Colon Carcinoma Cell Lines (대장암 세포주에 대한 만형자(Vitex rotundifolia) 추출물의 항암 효과)

  • Jo, Kyung-Jin;Yoon, Mi-Young;Lee, Mi-Ra;Cha, Mi-Ran;Park, Hae-Ryong
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • This study was performed to investigate the cytotoxic activity from Vitex rotundifolia. V. rotundifolia was extracted with methanol, ethanol, and acetone, and then the cytotoxic effect of these extracts was measured by the MTT reduction assay and morphological assay on the HT-29 human colon carcinoma cells. Among the three extracts, the acetone extract showed the highest cytotoxic activity on the HT-29 cells in a dose-dependent manner with an $IC_{50}$ value of 10 ${\mu}g/ml$. The acetone extract was further fractionated sequentially with n-hexane, diethyl ether, ethyl acetate, and water layer according to the degree of polarity. The n-hexane layer among the fractioned layers showed inhibitory activity on the growth of HT-29 cells. In addition, n-hexane layer also showed the cytotoxic activity against SW620 human colon carcinoma cells. These result indicated that extracts of V. rotundifolia may contain bioactive materials and could be potential candidates as chemotherapeutic agents against human colon carcinoma cells.