• 제목/요약/키워드: SW-480

검색결과 67건 처리시간 0.025초

Schizosaccharomyces pombe에서 SNF2에 속하는 hrp2+ 유전자의 특성 연구 (Isolation and Characterization of hrp2+ Gene Related to SNF2 Family In Yeast)

  • 최인순
    • 생명과학회지
    • /
    • 제15권2호
    • /
    • pp.192-196
    • /
    • 2005
  • 본 연구는 분열형 효모 Schizosaccharomyces pombe에서 여러 가지 DNA 절제회복 및 유전자 발현에 관여하는 SNF2/SW12유전자의 기능을 연구하기 위하여 이에 관련되는 유전자를 분리하고 그 특성을 연구하였다. SNF2 motif의 conserved sequence를 primer로 하여 중합효소 연쇄반응 (PCR) 방법으로 480 bp 크기의 DNA fragment를 분리하여, 이를 probe로 하여 효모에서 hrp2+ 유전자를 분리하였다. 분리한 hrp+ 유전자의 sequence homology를 비교한 결과 3개의 SNF2 motif를 포함하고 있었다. hrp2+ 유전자의 전사체 크기는 4.7kb임을 Northern hybridization으로 확인하였다. 분리한 유전자의 특성 연구를 위하여 Northern hybridization 으로 hrp2+ 유전자의 UV와 MMS에 대한 유도성을 조사한 결과 자외선에 대해서만 유전자의 발현이 유도되었다. 이 결과 분리한 hrp2+는 UV-inducible 유전자임을 확인하였다. 또한 분리한 유전자의 특성연구 중 하나로 hrp2+ 단백질을 분리하여 helicase activity를 측정하였다. 이 결과 분리한 hrp2+ 유전자는 전혀 helicase activity를 나타내지 않았다.

Comparison of CXCL10 Secretion in Colorectal Cancer Cell Lines

  • Lee, Song Mi;Lee, Ji Eun;Ahn, Hye Rim;Choi, Myung Hyun;Yoon, Seo Young;Rhee, Man Hee;Baik, Ji Sue;Seo, You Na;Park, Moon-Taek;Kim, Sung Dae
    • 대한의생명과학회지
    • /
    • 제28권3호
    • /
    • pp.200-205
    • /
    • 2022
  • Established cancer cell lines are widely used for developing biomarkers for the patient-specific treatment of colorectal cancer and predicting prognoses. However, cancer cell lines may exhibit different drug responses depending upon the characteristics of the cell line. Therefore, it is necessary to select a tumor cell line suitable for the purpose of the study by considering the cell characteristics. This study investigated the levels of CXCL10, which were recently been reported to play an important role in the outcome of tumor treatment, secreted by colon cancer cells. 2 × 105 cells/mL of each colorectal cancer cell was seeded into a 35 mm cell culture dish. After 24 h incubation, culture supernatant was used to determine the secreted CXCL10 levels. Among six colorectal cancer cell lines (HT-29, HCT116, CaCo-2, SW620, SW480, and CT26), Caco-2 cells showed the highest level of CXCL10 secretion. HT-29 cells showed the second-highest level of CXCL10 secretion. No significantly measurable level of CXCL10 secretion was detected in HCT116 cells. These results will be helpful in investigating the molecular basis of colorectal cancer.

Biosynthesis of Novel Glucosides Geldanamycin Analogs by Enzymatic Synthesis

  • Huo, Qiang;Li, Hong-Mei;Lee, Jae Kyoung;Li, Jing;Ma, Tao;Zhang, Xinyu;Dai, Yiqun;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.56-60
    • /
    • 2016
  • Two new glucosides (1 and 2) of geldanamycin (GA) analogs were obtained from in vitro glycosylation by UDP-glycosyltransferase (YjiC). Based on spectroscopic (HR-ESI-MS, 1D, and 2D-NMR) analyses, the glucosides were elucidated as 4,5-dihydro-7-O-descarbamoyl-7-hydroxyl GA-7-O-β-D-glucoside (1) and ACDL3172-18-O-β-D-glucoside (2). Furthermore, the water solubility of compounds 1 and 2 was about 215.2 and 90.7 times higher respectively, than that of the substrates. Among compounds 1-4, only 3 showed weak antiproliferative activity against four human tumor cell lines: MDA-MB-231, SMMC7721, HepG2, and SW480 (IC50: 13.6, 15.1, 31.8, and 22.7 μM, respectively).

Atractylochromene Is a Repressor of Wnt/β-Catenin Signaling in Colon Cancer Cells

  • Shim, Ah-Ram;Dong, Guang-Zhi;Lee, Hwa Jin;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.26-30
    • /
    • 2015
  • Wnt/${\beta}$-catenin signaling pathway was mutated in about 90% of the sporadic and hereditary colorectal cancers. The abnormally activated ${\beta}$-catenin increases the cancer cell proliferation, differentiation and metastasis through increasing the expression of its oncogenic target genes. In this study, we identified an inhibitor of ${\beta}$-catenin dependent Wnt pathway from rhizomes of Atractylodes macrocephala Koidzumi (Compositae). The active compound was purified by activity-guided purification and the structure was identified as 2,8-dimethyl-6-hydroxy-2-(4-methyl-3-pentenyl)-2H-chromene (atractylochromene, AC). AC suppressed b-catenin/Tcell factor transcriptional activity of HEK-293 reporter cells when they were stimulated by Wnt3a or inhibitor of glycogen synthase kinase-$3{\beta}$. AC down-regulated the nuclear level of ${\beta}$-catenin through the suppression of galectin-3 mediated nuclear translocation of ${\beta}$-catenin in SW-480 colon cancer cells. Furthermore, AC inhibits proliferation of colon cancer cell. Taken together, AC from A. macrocephala might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

Distinct Differences between TNF Receptor 1- and TNF Receptor 2- mediated Activation of NFκB

  • Thommesen, Liv;Laegreid, Astrid
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.281-289
    • /
    • 2005
  • Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of $NF{\kappa}B$ and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of $NF{\kappa}B$ and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in $NF{\kappa}B$ activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.

Anti-cancer Activity of the Leave Extracts of Rodgersia podophylla through β-catenin Proteasomal Degradation in Human Cancer Cells

  • Kim, Jeong Dong;Park, Su Bin;Kim, Ha Na;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.68-68
    • /
    • 2019
  • In this study, we evaluated the effect of Rodgersia podophylla leave extracts (RPL) on ${\beta}$-catenin level in human cancer cells. RPL dose-dependently inhibited cell proliferation in SW480, A549, MDA-MB-231, PC-3 and AsPC-1 cells. RPL dramatically decreased ${\beta}$-catenin protein level in all cancer cells. However, decreased level of ${\beta}$-catenin mRNA expression was observed in A549 and AsPC-1 cells. In addition, RPL dramatically attenuated cyclin D1 mRNA expression in all cancer cells. MG132 decreased the downregulation of ${\beta}$-catenin protein level induced by RPL in all cancer cells, while RPL-induced downregulation of ${\beta}$-catenin was inhibited by the inhibition of $GSK-3{\beta}$ by LiCl in MDA-MB-231 cells. RPL phosphorylated ${\beta}$-catenin and $GSK-3{\beta}$. In addition, the inhibition of $GSK-3{\beta}$ by LiCl attenuated RPL-induced ${\beta}$-catenin phosphorylation. Based on these findings, RPL may be a potential candidate for the development of chemopreventive or therapeutic agents for human cancer.

  • PDF

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.

MiR-454 Prompts Cell Proliferation of Human Colorectal Cancer Cells by Repressing CYLD Expression

  • Liang, Hong-Liang;Hu, Ai-Ping;Li, Sen-Lin;Xie, Jia-Ping;Ma, Qing-Zhu;Liu, Ji-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2397-2402
    • /
    • 2015
  • Previous studies have shown that miR-454 plays an important role in a variety of biological processes in various human cancer cells. However, the underlying mechanisms of this microRNA in colorectal cancer (CRC) cells remain largely unknown. In the present study, we investigated the miR-454 role in CRC cell proliferation. We found that miR-454 expression is markedly upregulated in CRC tissues and CRC cells compared with the matched tumor adjacent tissues and the FHC normal colonic cell line. Ectopic expression of miR-454 promoted the proliferation and anchorage-independent growth of CRC cells, whereas inhibition of miR-454 reduced this effect. Bioinformatics analysis further revealed cylindromatosis (CYLD), a putative tumor suppressor as a potential target of miR-454. Data from luciferase reporter assays showed that miR-454 directly binds to the 3'-untranslated region (3'-UTR) of CYLD mRNA and repressed expression at both transcriptional and translational levels. In functional assays, CYLD-silenced in miR-454-in-transfected SW480 cells have positive effect to promote cell proliferation, suggesting that direct CYLD downregulation is required for miR-454-induced CRC cell proliferation. In sum, our data provide compelling evidence that miR-454 functions as an onco-miRNA, playing a crucial role in the promoting cell proliferation in CRC, and its oncogenic effect is mediated chiefly through direct suppression of CYLD expression.

Anti-Proliferative Activity of Ethanol Extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) Through Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Park, Su Bin;Park, Ji Hye;Shin, Myeong Su;Son, Ho-Jun;Um, Yurry;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제30권6호
    • /
    • pp.640-646
    • /
    • 2017
  • In this study, we elucidated anti-cancer activity and potential molecular mechanism of 70% ethanol extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) (TR-E70) against human colorectal cancer cells. Anti-cell proliferative effect of TR-E70 was evaluated by MTT assay. The effect of TR-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. TR-E70 suppressed the proliferation of human colorectal cancer cell lines, HCT116 and SW480. Although TR-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by TR-E70 more dramatically occurred than that of cyclin D1 mRNA. Cyclin D1 downregulation by TR-E70 was attenuated in presence of MG132. In addition, TR-E70 phosphorylated threonine-286 (T286) of cyclin D1. TR-E70-mediated cyclin D1 degradation was blocked in presence of LiCl as an inhibitor $GSK3{\beta}$ but not PD98059 as an ERK1/2 inhibitor and SB203580 as a p38 inhibitor. Our results suggest that TR-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through $GSK3{\beta}$-dependent cyclin D1 degradation. From these findings, TR-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

Anticancer Properties of Teucrium persicum in PC-3 Prostate Cancer Cells

  • Tafrihi, Majid;Toosi, Samane;Minaei, Tayebeh;Gohari, Ahmad Reza;Niknam, Vahid;Arab Najafi, Seyed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.785-791
    • /
    • 2014
  • Crude extracts or phytochemicals obtained from some plants have potential anti-cancer properties. Teucrium persicum is an Iranian endemic plant belonging to the Lamiaceae family which has traditionally been used to relieve abdominal pains. However, the anti-cancer properties of this species of the Teucrium genus have not been investigated previously. In this study, we have used a highly invasive prostate cancer cell line, PC-3, which is an appropriate cell system to study anti-tumor properties of plants. A methanolic extract obtained from T persicum potently inhibited viability of PC-3 cells. The viability of SW480 colon and T47D breast cancer cells was also significantly decreased in the presence of the T persicum extract. Flow cytometry suggested that the reduction of cell viability was due to induction of apoptosis. In addition, the results of wound healing and gelatin zymography experiments supported anti-cell invasion activity of T persicum. Interestingly, sublethal concentrations of T persicum extract induced an epithelial-like morphology in a subpopulation of cells with an increase in E-Cadherin and ${\beta}$-Catenin protein levels at the cell membrane. These results strongly suggest that T persicum is a plant with very potent anti-tumor activity.