• Title/Summary/Keyword: SVPWM implementation

Search Result 31, Processing Time 0.027 seconds

A New PWM Method and its Implementation for a 3-Level Inverter Considering DC-Link Voltage Balancing and Minimum ON/Off Time (DC-링크 전압균형과 소자의 최소 온/오프 시간을 고려한 3-레벨 인버터의 PWM 기법 및 구현)

  • 이요한;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.35-38
    • /
    • 1998
  • In this paper, we present a new SVPWM strategy for a 3-level inverter. This SVPWM method is easily implemented without switching table like SVPWM. In addition, with proposed method, we can also keep the voltage balancing of DC-link capacitors and guarantee minimum on/off time of the devices. The principle of the proposed SVPWM method is described in detail, and its implementation method is also proposed. The usefulness of the proposed SVPWM method is verified through the simulation using MATLAB/Simulink.

  • PDF

Implementation of SVPWM Voltage Source Inverter Using FPGA (FPGA를 이용한 전압형 인버터 구동용 SVPWM 구현)

  • 임태윤;김동희;김종무;김중기;김민희
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.274-277
    • /
    • 1999
  • The paper describes a implementation of space vector pulse-width modulation (SVPWM) voltage source inverter using Field Programmable Gate Array(FPGA) for a induction motor control system. The implemented chip is included logic circuits for SVPWM, dead time compensation and speed detection using Quick Logic, QL16X24B. The maximum operating frequency and delay time can be set to 110MHz and 6 nsec. The designed FPGA for SVPWM can be incorporated with a digital signal processing to provide a simple and effective solution for high performance voltage source inverter drives. Simulation and Implementation results are shown to verify the usefulness of FPGA as a Application Specific Integrated Circuit(ASIC) in power electronics applications

  • PDF

Implementation of SVPWM Module for the Multi-Motor Control (다중모터 제어를 위한 SVPWM 모듈의 구현)

  • Ha, Dong-Hyun;Hyun, Dong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.124-129
    • /
    • 2009
  • Recently, PWM inverter is widely utilized for many industrial applications such as high performance drive and space vector pulse width modulation(SVPWM) inverter which has high voltage ratio and low harmonics compared to conventional PWM inverter. This paper presents the implementation on a field programmable gate array(FPGA) of a SVPWM module for a voltage source inverter. The SVPWM module consists of PWM generator, current and position sensor interface and dead time compensator. The implemented SVPWM module can be integrated with a digital signal processor(DSP) to provide a flexible and effective solution for high performance voltage source inverter and for the use of multi-motor control. The performance of SVPWM module is verified by simulation and several experimental results.

New Method of SVPWM Implementation Using Single Carrier Wave and Comparision of PI/PR Current Control for the Vienna Converter (비엔나 컨버터를 위한 단일 반송파를 이용한 새로운 방식의 SVPWM 구현과 PI/PR 전류제어기의 비교)

  • Cho, Nam-Su;Ji, Jun-Keun;Lee, Tae-Won;Yun, Bong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.522-532
    • /
    • 2017
  • In this paper, a new method of SVPWM implementation for 3-Phase 3-Leg 3-Level AC/DC converter known as the Vienna converter is proposed. Also the performances of PI and PR controller used in AC input current controller are compared. To verify the proposed method, PSIM, a power electronics simulation program, is utilized. The performances of the proposed new method and the two existing methods are compared through simulation and experiment. Also PI and PR controller in AC input current controller are compared through 10[kW] Vienna converter system.

An Equivalent Carrier-based Implementation of a Modified 24-Sector SVPWM Strategy for Asymmetrical Dual Stator Induction Machines

  • Wang, Kun;You, Xiaojie;Wang, Chenchen
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1336-1345
    • /
    • 2016
  • A modified space vector pulse width modulation (SVPWM) strategy based on vector space decomposition and its equivalent carrier-based PWM realization are proposed in this paper, which is suitable for six-phase asymmetrical dual stator induction machines (DSIMs). A DSIM is composed of two sets of symmetrical three-phase stator windings spatially shifted by 30 electrical degrees and a squirrel-cage type rotor. The proposed SVPWM technique can reduce torque ripples and suppress the harmonic currents flowing in the stator windings. Above all, the equivalent relationship between the proposed SVPWM technique and the carrier-based PWM technique has been demonstrated, which allows for easy implementation by a digital signal processor (DSP). Simulation and experimental results, carried out separately on a simulation system and a 3.0 kW DSIM prototype test bench, are presented and discussed.

SVPWM System for Induction Motor Drive Using ASIC (ASIC을 이용한 유도전동기 구동용 SVPWM 시스템)

  • Lim, Tae-Yun;Kim, Dong-Hee;Kim, Jong-Moo;Kim, Joong-Ki;Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.103-108
    • /
    • 1999
  • The paper describes a implementation of space vector pulse-width modulation voltage source inverter and interfacing of DSP using field programmable gate array(FPGA) for a induction motor vector control system. The implemented chip is included logic circuits for SVPWM, dead time compensation and speed detection using Quick Logic, QLl6X24B. The maximum operating frequency and delay time can be set to 110MHz and 6 nsec. The designed Application Specific Integrated Circuit(ASIC) for SVPWM can be incorporated with a digital signal processing to provide a simple and effective solution for high performance induction motor drives with a voltage source inverter. Simulation and implementation results are shown to verify the usefulness of ASIC in a motor drive system and power electronics applications.

  • PDF

Design and implementation of BLDC motor drive logic using SVPWM method with FPGA (FPGA를 활용한 SVPWM방식의 정현파 BLDC 모터 구동 로직 설계 및 구현)

  • Jeon, Byeong-chan;Park, Won-Ki;Lee, Sung-chul;Lee, Hyun-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.652-654
    • /
    • 2016
  • This paper shows the Design and implementation of sinusoidal BLDC motor drive logic using SVPWM method with FPGA. Sinusoidal BLDC motor driver logic consists of sine-wave PWM generator, dead-time and lead angle control logic. PWM generator logic is designed using SVPWM method for increase of 15.5% linear domain than general sine-wave PWM. This logic is verified and implemented using Spartan-6 FPGA Board. Test results show that THD(Total Harmonic Distortion) of motor-driving current is 19.2% and rotor position resolution is 1.6 degree.

  • PDF

Three-phase 3-level and 2-level SVPWM Implementation with 100 kHz Switching Frequency using FPGA (FPGA를 이용한 100 kHz 스위칭 주파수의 3상 3-level과 2-level의 SVPWM의 구현)

  • Moon, Kyeong-Rok;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2020
  • This paper presents a 3-level, 2-level SVPWM technique with 100 kHz switching using Verilog HDL, one of the languages of FPGA. In the case of IGBT devices mainly used in inverters, they have a switching frequency around 20kHz. Recent research and development of next-generation power semiconductor devices such as GAN has enabled switching of more than 100kHz, which can miniaturize power converters, and apply various new algorithms due to the injection of harmonics. In the existing system using the IGBT, the control using the DSP is common, but the controller configuration for 100 kHz switching requires the use of FPGA. Therefore, this paper explains the theory and implementation of SVPWM applied to two-level and three-level inverters using FPGAs and verifies the performance through the output waveform. In addition, this paper implements 3-level SVPWM by using only one carrier instead of using two carriers in the conventional method.

An Overmodulation Strategy for SVPWM Inverter Using Pole Voltage (폴전압을 이용한 SVPWM 인버터의 과변조 기법)

  • 韓 大 雄;金 相 勳
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.149-157
    • /
    • 2002
  • In this paper, a novel overmodulation strategy for space-vector PWM(SVPWM) inverters to utilize dc link voltage fully Is presented. The proposed strategy uses the concept of SVPWM based on the zero sequence signal(offset voltage) injection principle. So, by modifying the pole voltage simply, the linear control of inverter output voltage over the whole overmodulation range can be achieved easily The proposed strategy is so simple that its practical implementation is easy. The validity of the proposed strategy is confirmed by the experimental results.

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.