• 제목/요약/키워드: SVM 분류기

검색결과 302건 처리시간 0.033초

웹서비스를 이용한 SVM기반 분산 문서분류기 설계 (Design distributed document classifier based on SVM using Web Services)

  • 김용수;박용범
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.501-504
    • /
    • 2004
  • 인터넷이 발달하면서 인터넷 상에서 공유 문서를 효율적으로 분류하기 위한 자동 분류의 필요성이 높아지고 있다. 또한 인터넷은 단순한 문서 제공의 한계를 넘어 어플리케이션간의 통합연동을 위한 기술이 대두되고 있다. 이러한 관점에서 본 논문은 새롭게 제시되고 있는 웹서비스를 이용하여 SVM 기반의 분류기를 분산 구성하여 설계하였고, 문서로부터 추출된 특성단어 벡터정보를 이용하여 SVM 학습 후 각각의 분류기를 통하여 분산 문서 분류를 수행한다. 특성단어 벡터는 $TF^{\ast}IDF$에 기반한 특성 표현법을 사용하였으며, 분류 범주 별로 SVM 기반의 분류기 모델 데이터를 생성하기 위해 특성 단어 사전을 구축하여 분류 기준으로 구성하였다.

  • PDF

패턴 분류를 위한 Fuzzy Twin Support Vector machine 개발 (Development of Fuzzy Support Vector Machine for Pattern Classification)

  • 천민규;윤창용;김은태;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.279-282
    • /
    • 2007
  • Support Vector Machine(SVM)은 통계적 학습 이론에 기반을 둔 분류기이다. 또한 Twin Support Vector Machine(TWSVM)은 이진 SVM 분류기의 한 종류로써, 서로 관련된 두 개의 SVM 유형 문제를 통해 평행하지 않은 두 개의 평면을 결정하고 이 두 평면을 통해 분류기를 완성하는 방식이다. 이러한 방식은 TWSVM은 학습 시간이 SVM에 비해 훨씬 짧으며, SVM과 비교하여 떨어지지 않는 성능을 보여준다. 본 논문은 분류기 입력에 Fuzzy Memvership을 적용하는 방식의 TWSVM을 제안하고, 2차원 벡터 입력에 대한 실험을 통하여 기존에 제시 되었던 TWSVM과 비교한다.

  • PDF

퓨리에 형태표현자와 SVM 을 이용한 U87 세포의 형태학적 분류기 모델구축 (Binary Classifier Construction for U87 Cell Shapes using Fourier Shape Descriptor and SVM)

  • 강미선;김정식;김명희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.751-753
    • /
    • 2010
  • 본 논문에서는 위상차 현미경 영상 내 U87 세포의 정확한 형태학적 분류를 위한 이진 분류기 구축 방법을 제안한다. 본 방법은 Fourier descriptor 기반 세포형상 표현을 SVM 이진분류기 구축에 사용함으로써 분류 대상인 원추형과 원형세포에 대해 영상 내 세포의 위치와 회전, 크기의 변화에 대해 강인한 분류성능을 제공한다. 본 실험을 통해 polynomial 커널에서 학습된 SVM 분류기가 linear, RBF, sigmoid 에 비교하여 가장 정확한 분류 성능을 보임을 확인하였다. 본 연구는 논문상 기준인 두 종류의 세포 형태 분류기를 기반 프레임워크로 삼아 좀더 다양한 세포 형태를 분류할 수 있도록 개선된다면 악성뇌종양의 전이억제치료에 효과적인 전이행동분석에 도움을 줄 수 있을 것으로 기대된다.

문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구 (Improving the Performance of SVM Text Categorization with Inter-document Similarities)

  • 이재윤
    • 정보관리학회지
    • /
    • 제22권3호
    • /
    • pp.261-287
    • /
    • 2005
  • 이 논문의 목적은 SVM(지지벡터기계) 분류기의 성능을 문헌간 유사도를 이용해서 향상시키는 것이다. SVM은 효과적인 기계학습 시스템으로서 최고 수준의 문헌자동분류 기술로 인정받고 있다. 이 연구에서는 문헌 벡터 자질 표현에 기반한 SVM 문헌자동분류를 제안하였다. 제안한 방식은 분류 자질로 색인어 대신 문헌 벡터를, 자질 값으로 가중치 대신 벡터유사도를 사용한다. 제안한 방식에 대한 실험 결과, SVM 분류기의 성능을 향상시킬 수 있었다. 실행 효율 향상을 위해서 문헌 벡터 자질 선정 방안과 범주 센트로이드 벡터를 사용하는 방안을 제안하였다. 실험 결과 소규모의 벡터 자질 집합만으로도 색인어 자질을 사용하는 기존 방식보다 나은 성능을 얻을 수 있었다.

SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현 (Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems)

  • 임정수;장준혁
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.461-467
    • /
    • 2011
  • 제한된 대역폭을 효율적으로 사용하기 위해서 도입된 가변 전송률은 먼저 신호의 정확한 분류를 필요로 한다. 특히 멀티미디어 서비스가 보편화 되면서 음성/음악 신호 분류의 중요성도 높아지게 되었다. 음성/음악 분류기 중, 서포트벡터머신 (SVM)을 이용한 분류기는 높은 분류 정확도로 주목받고 있다. 그러나 SVM는 많은 계산량과 저장 공간을 요구하므로 효율적인 구현이 요구되며, 특히 임베디드 시스템과 같이 자원이 제한 적인 경우에는 더욱 그러하다. 본 논문에서는 먼저 SVM을 이용한 음성/음악 분류기의 임베디드 시스템으로의 구현을 실행시간과 에너지소비의 관점에서 분석하고, 효율적인 구현을 위한 두가지 방법들을 제안한다. 서포트벡터의 판별결과에의 기여도를 바탕으로 기여도가 낮은 벡터들을 제외하는 방법과, 음성/음악 신호에 기본적으로 존재하는 각 프레임간의 상관관계를 이용하여 입력신호의 일부를 건너뛰는 방법이다. 이 기법들은 SVM의 학습 시 사용되는 다른 최적화 기법에 관계없이 적용이 가능하며, 실험을 통해 분류의 정확도, 실행시간, 그리고 에너지소비의 관점에서 그 성능을 증명하였다.

자가학습 가능한 SVM 기반 가스 분류기의 설계 (Design of SVM-Based Gas Classifier with Self-Learning Capability)

  • 정우재;정윤호
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1400-1407
    • /
    • 2019
  • 본 논문은 실시간 자가학습과 분류 기능을 모두 지원하는 support vector machine (SVM) 기반 가스 분류기의 하드웨어 구조 설계 및 구현 결과를 제시한다. 제안된 가스 분류기는 학습 알고리즘으로 modified sequential minimal optimization(MSMO)을 사용하였고, 학습과 분류 기능을 공유구조를 사용하여 설계함으로써 기존 논문 대비 하드웨어 면적을 35% 감소시켰다. 설계된 가스 분류기는 Xilinx Zynq UltraScale+ FPGA를 사용하여 구현 및 검증되었고, 108MHz의 동작 주파수에서 3,337개의 CLB LUTs로 구현 가능함을 확인하였다.

분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류 (Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel)

  • 최재완;변영기;김용일;유기윤
    • 대한공간정보학회지
    • /
    • 제14권4호통권38호
    • /
    • pp.71-77
    • /
    • 2006
  • 통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.

  • PDF

Support Vector Machine을 이용한 문맥 인지형 융합 (Context-Aware Fusion with Support Vector Machine)

  • 허경용;김성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.19-26
    • /
    • 2014
  • 앙상블 분류기는 여러 개의 분류기에서의 예측 결과를 결합함으로써 단일 분류기에 비해 신뢰성 높은 예측 결과를 얻을 수 있는 방법으로 널리 사용되고 있다. 앙상블 분류기를 위해서는 여러 가지 방법이 사용되고 있으며 흔히 사용되는 방법으로는 부스팅이 있다. 하지만 부스팅은 단계적인 학습을 통해 이전 단계에서 잘못 분류된 샘플들을 다음 단계에서 다시 분류하는 방식으로 이전 단계로의 피드백이 불완전한 순차적인 방법이라는 한계가 있다. 이 논문에서는 단일 분류기 중 가장 성능이 좋은 것으로 알려진 SVM을 기본분류기로 사용하여 동시에 여러개의 SVM을 학습하는 문맥 감지형 SVM 앙상블알고리즘을 제안한다. 제안하는 방법에서는 특징 공간을 문맥으로 나누는 클러스터링과 SVM 학습을 동시에 진행하므로 특징 공간 분할과 학습이 서로의 결과를 사용할 수 있어 기존 앙상블학습에 비해 더 나은 결과를 얻을 수 있으며 이는 실험 결과를 통해 확인할 수 있다.

포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류 (Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers)

  • 홍진혁;민준기;조웅근;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.886-895
    • /
    • 2006
  • 지문분류는 사전에 정의된 클래스로 입력된 지문을 분류하여 자동지문인식 시스템에서 비교해야할 지문의 수를 줄여준다. 지지벡터기계(support vector machine; SVM)는 패턴인식 분야에서 널리 사용되고 있을 뿐만 아니라 지문분류에서도 높은 성능을 보이고 있다. SVM은 이진클래스 분류기이기 때문에 다중클래스 문제인 지문분류를 위해서 적절한 분류기 생성과 결합 기법이 필요하며, 본 논문에서는 일대다(one-vs-all; OVA) 방식으로 구성된 SVM을 naive Bayes(NB) 분류기를 이용하여 동적으로 구성하는 분류방법을 제안한다. 지문분류에서 대표적으로 사용되는 특징인 FingerCode와 지문의 구조적 특징인 특이점과 의사융선을 사용하여 OVA SVM과 NB 분류기를 학습하고, 포섭구조의 분류기를 구성하여 효과적인 지문분류를 수행한다. NIST-4 데이타베이스에 제안하는 방법을 적용하여 5클래스 분류에 대해서 90.8%의 높은 분류율을 획득하였으며, OVA 전략의 SVM을 다중클래스 분류문제에 적용할 때 발생하는 동점문제를 효과적으로 처리하였다.

Best-First decision tree 기법을 적용한 심전도 데이터 분류기의 정확도 향상에 관한 연구 (Research on improving correctness of cardiac disorder data classifier by applying Best-First decision tree method)

  • 이현주;신동규;박희원;김수한;신동일
    • 인터넷정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.63-71
    • /
    • 2011
  • 심전도 질환 데이터는 일반적으로 분류기를 사용한 실험이 많다. 심전도 신호는 QRS-Complex와 R-R interval을 추출하는 경우가 많은데 본 실험에서는 R-R interval을 추출하여 실험하였다. 심전도 데이터의 분류기 실험은 일반적으로 SVM(Support Vector Machine)과 MLP(Multilayer Perceptron) 분류기로 수행되지만 본 실험은 정확도 향상을 위해 Random Forest 분류기 알고리즘 중 Decision Tree를 Best-First Decision Tree(B-F Tree)로 수정하여 실험하였다. 그리고 정확도 비교분석을 위해 SVM, MLP, RBF(Radial Basic Function) Network와 Decision Tree 분류기 실험을 같이 수행하였고, 동일한 데이터와 간격으로 실험한 타 논문의 결과와 비교해보았다. 수정한 Random Forest 분류기의 정확도를 다른 네 개의 분류기와 타 논문의 실험과 비교해보니 정확도 부분에서는 Random Forest가 가장 우수하였다. 본 실험의 전처리 과정은 대역통과 필터(Band-pass filter)를 사용하여 R-R interval을 추출하였는데 향후에는 정확한 간격을 추출하기 위한 필터의 연구가 사려된다.