• Title/Summary/Keyword: SVM 모델

Search Result 398, Processing Time 0.028 seconds

Segmentation of Long Chinese Sentences using Comma Classification (쉼표의 자동분류에 따른 중국에 장문분할)

  • Jin Me-Ixun;Kim Mi-Young;Lee Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.470-480
    • /
    • 2006
  • The longer the input sentences, the worse the parsing results. To improve the parsing performance, many methods about long sentence segmentation have been reserarched. As an isolating language, Chinese sentence has fewer cues for sentence segmentation. However, the average frequency of comma usage in Chinese is higher than that of other languages. The syntactic information that the comma conveys can play an important role in long sentence segmentation of Chinese languages. This paper proposes a method for classifying commas in Chinese sentences according to the context where the comma occurs. Then, sentences are segmented using the classification result. The experimental results show that the accuracy of the comma classification reaches 87.1%, and with our segmentation model, the dependency parsing accuracy of our parser is improved by 5.6%.

Predictive Models for Sasang Constitution Types Using Genetic Factors (유전지표를 활용한 사상체질 분류모델)

  • Ban, Hyo-Jeong;Lee, Siwoo;Jin, Hee-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.32 no.2
    • /
    • pp.10-21
    • /
    • 2020
  • Objectives Genome-wide association studies(GWAS) is a useful method to identify genetic associations for various phenotypes. The purpose of this study was to develop predictive models for Sasang constitution types using genetic factors. Methods The genotypes of the 1,999 subjects was performed using Axiom Precision Medicine Research Array (PMRA) by Life Technologies. All participants were prescribed Sasang Constitution-specific herbal remedies for the treatment, and showed improvement of original symptoms as confirmed by Korean medicine doctor. The genotypes were imputed by using the IMPUTE program. Association analysis was conducted using a logistic regression model to discover Single Nucleotide Polymorphism (SNP), adjusting for age, sex, and BMI. Results & Conclusions We developed models to predict Korean medicine constitution types using identified genectic factors and sex, age, BMI using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). Each maximum Area Under the Curve (AUC) of Teaeum, Soeum, Soyang is 0.894, 0.868, 0.767, respectively. Each AUC of the models increased by 6~17% more than that of models except for genetic factors. By developing the predictive models, we confirmed usefulness of genetic factors related with types. It demonstrates a mechanism for more accurate prediction through genetic factors related with type.

A Question Type Classifier Using a Support Vector Machine (지지 벡터 기계를 이용한 질의 유형 분류기)

  • An, Young-Hun;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.129-136
    • /
    • 2002
  • 고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 유형의 난이도에 관계없이 의도를 파악할 수 있는 질의유형 분류기가 필요하다. 본 논문에서는 문서 범주화 기법을 이용한 질의 유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 이 과정에서 질의의 구문 특성을 반영하기 위해서 슬라이딩 윈도 기법을 이용한다. 또한, 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계(support vector machine, SVM)는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에지지 벡터 기계를 이용한 자동문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.

  • PDF

Neural -Q met,hod based on $\varepsilon$-SVR ($\varepsilon$-SVR을 이용한 Neural-Q 기법)

  • 조원희;김영일;박주영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.162-165
    • /
    • 2002
  • Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있는데, 특히, 시스템모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. Neural Q-learning은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시킴으로써, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, Neural Q방식은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용하여 학습하는 절차를 취하기 때문에, 시행착오를 통하여 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용으로 인해 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점을 상속받는 한계가 있다. 따라서, 본 논문에서는 Neural-0 학습의 도구로, 역전파 알고리즘으로 학습되는 MLP 신경망을 사용하는 대신 최근 들어 여러 분야에서 그 성능을 인정받고 있는 서포트 벡터 학습법을 사용하는 방법을 택하여, $\varepsilon$-SVR(Epsilon Support Vector Regression)을 이용한 Q-value 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 서포트 벡터학습 기반 Neural-Q 방법의 적용 가능성을 알아보았다.

Detection of Aggressive Pig Activity using Depth Information (깊이 정보를 이용한 돼지의 공격 행동 탐지)

  • Lee, Jonguk;Jin, Long;Zuo, Shangsu;Park, Daihee;Chung, Yongwha
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.770-772
    • /
    • 2015
  • 어미로부터 생후 21일령 또는 28일령에 젖을 때는 이유자돈들만을 개별적인 돈사에서 합사하는 경우, 낯선 환경 및 새로운 동료들과의 서열 구분을 위한 공격적인 행동이 매우 빈번하게 발생한다. 이로 인한 돼지의 성장 저하는 농가의 소득 하락으로 이어져 국내 외 양돈 농가의 큰 문제로 인식되고 있다. 본 논문에서는 키넥트 카메라에서 취득할 수 있는 영상의 깊이정보를 이용하여 이유자돈들의 공격적인 행동을 조기 탐지할 수 있는 프로토타입 모니터링 시스템을 제안한다. 먼저 제안한 시스템은 키넥트의 적외선 센서에서 실시간으로 취득하는 깊이 정보로부터 움직임이 있는 객체들만을 탐지하고, 해당 객체들의 ROI를 설정한다, 둘째, ROI를 이용하여 5가지 특정 정보(객체의 평균, 최고, 최소 속도, 객체 속도의 표준편차, 두 객체 사이의 최소 거리)를 추출한다. 셋째, 취득한 특징 정보는 이진 클래스 분류 문제로 해석하여, 기계학습의 대표적인 모델인 SVM을 탐지기로 사용하였다. 실제 이유자돈사에서 취득한 키넥트 영상을 이용하여 모의 실험을 수행한 결과 안정적인 성능을 확인하였다.

Feature Vector Generation of Korean Cow Oestrus Vocalization (한우 발정기 발성음의 특징 벡터 생성)

  • Lee, Jonguk;Chung, Yongwha;Kim, Suk;Chang, Hong-Hee;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1154-1157
    • /
    • 2012
  • 축산농가의 경제성과 직결되는 암소 발정기의 조기 탐지는 IT 농 축산 학계에서도 매우 중요한 문제 중 하나이며 반듯이 해결해야만 하는 문제로 알려져 있다. 이를 해결하기 위한 다양한 연구 방법들 중, 본 논문에서는 소리 센서 환경에서의 암소의 발정기 탐지 시스템에 관한 연구를 대상으로 한다. 특히, 발정기 발성음의 특징 벡터 생성에 초점을 맞춘다. 특징은 크게 분별력과 차원이라는 두 가지 기준에 대해 우수해야 한다. 즉, 좋은 특징이란 서로 다른 부류를 잘 분별해 주어야 할 뿐만 아니라, 특징 벡터의 차원이 낮을수록 계산 효율이 좋고 차원의 저주에서 멀어 진다. 본 논문에서는 통계학에 기초한 체계적인 특징 벡터 생성에 관한 알고리즘을 제안하고, 실제 축사에서 녹취한 한우 발정기 발성음을 대상으로 낮은 차원의 특징 벡터 생성 과정을 보인다. 또한 이상상황 탐지기로 잘 알려진 단일 클래스 SVM의 대표 모델인 SVDD를 탐지기로 설정하여 생성된 특징 벡터의 분별력을 실험적으로 검증한다.

Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films (스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구)

  • Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

An Automatic Approach for the Recommendation of Bug Report Priority Based on the Stack Trace (Stack Trace 기반 Bug report 우선순위 자동 추천 접근 방안)

  • Lee, JeongHoon;kim, Taeyoung;Choi, Jiwon;Kim, SunTae;Ryu, Duksan
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.866-869
    • /
    • 2020
  • 소프트웨어 개발 환경이 빠르게 변화함에 따라 시스템의 복잡성이 증가하고 있다. 이에 따라 크고 작은 소프트웨어의 버그를 피할 수 없게 되며 이를 효율적으로 처리하기 위해 Bug report 를 사용한다. 하지만, Bug report 에서 개발자가 해당 Bug report 의 우선순위를 결정하는 과정은 노력과 비용 그리고 시간을 많이 소모하게 만든다. 따라서, 본 논문에서는 Bug report 내의 Stack trace 를 기반으로 Bug 의 우선순위를 자동적으로 추천하는 기법을 제안한다. 이를 위해 본 연구에서는 첫 번째로 Bug report 로부터 Stack trace 를 추출하였으며 Stack trace 의 3 가지 요소(Exception, Reason 그리고 Stack frame)에 TF-IDF, Word2Vec 그리고 Stack overflow 를 사용하여 특징 벡터를 정의하였다. 그리고 Bug 의 우선순위 추천 모델을 생성하기 위해 4 가지의 Classification 알고리즘을(Random Forest, Decision Tree, XGBoost, SVM)을 적용하였다. 평가에서는 266,292 개의 JDK library 의 Bug report 데이터를 수집하였고 그중 Stack trace 를 가진 Bug report 로부터 68%의 정확도를 산출하였다.

Simultaneous Motion Recognition Framework using Data Augmentation based on Muscle Activation Model (근육 활성화 모델 기반의 데이터 증강을 활용한 동시 동작 인식 프레임워크)

  • Sejin Kim;Wan Kyun Chung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.203-212
    • /
    • 2024
  • Simultaneous motion is essential in the activities of daily living (ADL). For motion intention recognition, surface electromyogram (sEMG) and corresponding motion label is necessary. However, this process is time-consuming and it may increase the burden of the user. Therefore, we propose a simultaneous motion recognition framework using data augmentation based on muscle activation model. The model consists of multiple point sources to be optimized while the number of point sources and their initial parameters are automatically determined. From the experimental results, it is shown that the framework has generated the data which are similar to the real one. This aspect is quantified with the following two metrics: structural similarity index measure (SSIM) and mean squared error (MSE). Furthermore, with k-nearest neighbor (k-NN) or support vector machine (SVM), the classification accuracy is also enhanced with the proposed framework. From these results, it can be concluded that the generalization property of the training data is enhanced and the classification accuracy is increased accordingly. We expect that this framework reduces the burden of the user from the excessive and time-consuming data acquisition.

Decision Making Support System for VTSO using Extracted Ships' Tracks (항적모델 추출을 통한 해상교통관제사 의사결정 지원 방안)

  • Kim, Joo-Sung;Jeong, Jung Sik;Jeong, Jae-Yong;Kim, Yun Ha;Choi, Ikhwan;Kim, Jinhan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.310-311
    • /
    • 2015
  • Ships' tracking data are being monitored and collected by vessel traffic service center in real time. In this paper, we intend to contribute to vessel traffic service operators' decision making through extracting ships' tracking patterns and models based on these data. Support Vector Machine algorithm was used for vessel track modeling to handle and process the data sets and k-fold cross validation was used to select the proper parameters. Proposed data processing methods could support vessel traffic service operators' decision making on case of anomaly detection, calculation ships' dead reckoning positions and etc.

  • PDF