• 제목/요약/키워드: SVM (Support Vector Method)

검색결과 658건 처리시간 0.027초

Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식 (Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers)

  • 장길진;조아라;박정식;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-146
    • /
    • 2014
  • 본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.

SVM의 다중결정템플릿을 이용한 지문분류 (Fingerprint Classification using Multiple Decision Templates with SVM)

  • 민준기;홍진혁;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1136-1146
    • /
    • 2005
  • 지문분류는 대규모 자동지문식별시스템에서 지문을 카테고리별로 나누어 매칭시간을 줄이는데 유용하다. 지문을 5가지 클래스로 분류하는 헨리시스템을 기반으로 신경망이나 SYM(Support Vector Machines) 등과 같은 다양한 패턴분류 기법들이 지문분류에 널리 사용되고 있다. 특히 최근에는 높은 분류 성능을 보이는 SVM 분류기를 이용한 연구가 활발하다. 이진분류기인 SVM을 지문분류문제에 적용하기 위해서 본 논문에서는 새로운 분류기 결합모델인 다중결정템플릿(Multiple Decision Templates, MuDTs)을 제안한다. 이 방법은 클래스 구분이 모호한 지문영상들의 분류에서 단일 결합모델들의 한계를 극복하기 위해, 하나의 지문클래스로부터 서로 다른 특성을 갖는 클러스터들을 추출하여 각 클러스터에 적합한 결합모델을 생성한다. NIST Database4 데이타로부터 추출한 핑거코드에 대해 실험한 결과, 5클래스와 4클래스 분류문제에 대하여 각각 $90.4\%$$94.9\%$의 분류성능(거부율 $1.8\%$)을 획득하였다.

기계학습을 이용한 비점성토 및 점성토 지반에서 시간의존 교각주위 국부세굴의 예측 (Prediction of time dependent local scour around bridge piers in non-cohesive and cohesive beds using machine learning technique)

  • 최성욱;최성욱;최병웅
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1275-1284
    • /
    • 2021
  • 본 논문에서는 기계학습을 이용하여 비점성토 및 점성토 지반에서 시간에 따른 교각주위 국부세굴을 예측하였다. 기계학습 기법으로는 과적합 오차를 유발하지 않는다고 알려진 Support Vector Machines (SVM) 기법이 사용되었다. 비점성토 지반 및 점성토 지반에서 시간에 따라 발달하는 세굴심을 7개 및 9개의 변수를 각각 이용하여 표현하였다. 여러 실험을 통해 얻어진 시계열 자료를 이용하여 개발된 모형을 학습시키고 검증하였다. 계산된 평균절대비오차(MAPE)에 의하면 모형의 학습과 검증이 적절하게 수행된 것으로 나타났다. 실험 결과뿐 아니라 Choi and Cho 공식과 Briaud et al.이 제시한 SRICOS 방법에 의한 결과와 비교하였다. 본 연구를 통해 양질의 자료가 충분히 제공되는 경우 SVM 모형이 비점성토 및 점성토 지반 시간의존 국부세굴을 예측할 수 있음을 보여주었다.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Adaptive SVM 기법 및 신뢰성 개념을 적용한 강관다단공법의 설계기법 연구 (Design of umbrella arch method based on adaptive SVM and reliability concept)

  • 이준석;사공명;박정준;최일윤
    • 한국터널지하공간학회 논문집
    • /
    • 제20권4호
    • /
    • pp.701-715
    • /
    • 2018
  • 본 연구에서는 터널주변 원지반의 불확실성을 고려한 신뢰성기반 강관다단공법의 설계기법에 대하여 논의하였다. 이를 위하여 기계학습기법의 한 부류인 adaptive support vector machine과 시공 중인 터널의 한계평형해석기법을 도입한 후, 강관다단공법을 적용한 터널의 안전성 여부에 대한 훈련과정을 최소화할 수 있는 방안을 제안하였다. 제안한 기법은 전형적인 Monte Carlo 기법과의 비교를 통해 그 효과를 분석하였다. 이 결과, 제안한 신뢰성기반 ASVM 기법은 원지반의 불확실성을 감안하는 경우, 보조공법 적용에 따른 터널의 시공 중 파괴확률을 효율적으로 계산할 수 있음을 입증하였다. 이 결과를 바탕으로 향후에는 한계평형해석을 적용할 수 없는 경우 등을 감안하여 최소의 수치해석 결과를 바탕으로 파괴확률을 추론해 낼 수 있는 신속 ASVM 기법을 개발할 예정이다.

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

Improvement of Evolutionary Computation of Genetic Algorithm using SVM

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1513-1516
    • /
    • 2003
  • Genetic algorithm is well known as a stochastic searching method. In this paper, a modified genetic algorithm using 'Suppor Vector Machines (SVM)' is proposed. SVM is used to reduce the number of calling the objective function which in turn accelerate the searching speed compared to the conventional GA.

  • PDF

Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machines

  • Wan, Chunfeng;Mita, Akira
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.405-421
    • /
    • 2010
  • This paper proposes a method for early warning of hazard for pipelines. Many pipelines transport dangerous contents so that any damage incurred might lead to catastrophic consequences. However, most of these damages are usually a result of surrounding third-party activities, mainly the constructions. In order to prevent accidents and disasters, detection of potential hazards from third-party activities is indispensable. This paper focuses on recognizing the running of construction machines because they indicate the activity of the constructions. Acoustic information is applied for the recognition and a novel pipeline monitoring approach is proposed. Principal Component Analysis (PCA) is applied. The obtained Eigenvalues are regarded as the special signature and thus used for building feature vectors. One-class Support Vector Machine (SVM) is used for the classifier. The denoising ability of PCA can make it robust to noise interference, while the powerful classifying ability of SVM can provide good recognition results. Some related issues such as standardization are also studied and discussed. On-site experiments are conducted and results prove the effectiveness of the proposed early warning method. Thus the possible hazards can be prevented and the integrity of pipelines can be ensured.

Deterministic and probabilistic analysis of tunnel face stability using support vector machine

  • Li, Bin;Fu, Yong;Hong, Yi;Cao, Zijun
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.17-30
    • /
    • 2021
  • This paper develops a convenient approach for deterministic and probabilistic evaluations of tunnel face stability using support vector machine classifiers. The proposed method is comprised of two major steps, i.e., construction of the training dataset and determination of instance-based classifiers. In step one, the orthogonal design is utilized to produce representative samples after the ranges and levels of the factors that influence tunnel face stability are specified. The training dataset is then labeled by two-dimensional strength reduction analyses embedded within OptumG2. For any unknown instance, the second step applies the training dataset for classification, which is achieved by an ad hoc Python program. The classification of unknown samples starts with selection of instance-based training samples using the k-nearest neighbors algorithm, followed by the construction of an instance-based SVM-KNN classifier. It eventually provides labels of the unknown instances, avoiding calculate its corresponding performance function. Probabilistic evaluations are performed by Monte Carlo simulation based on the SVM-KNN classifier. The ratio of the number of unstable samples to the total number of simulated samples is computed and is taken as the failure probability, which is validated and compared with the response surface method.