• 제목/요약/키워드: SUSPENSION

검색결과 4,715건 처리시간 0.039초

능동 현가장치에의 지능형 제어시스템 적용에 관한 연구 (A Study on Adopting Intelligent Control System in Active Suspension Equipment)

  • 박중현
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.287-293
    • /
    • 2007
  • 본 논문에서는 능동 현가장치의 해석 및 설계에 지능형 강인제어 이론을 적용하여 현가장치설계에 응용 할 수 있는 이론 및 실험적 제어장치 적용에 관한 연구를 수행하였다. 최근의 현가장치설계에서는 강성과 감쇠를 능동적으로 제어하는 기술의 적용이 일반화되고 있으며, 다른 차량안정성제어장치와의 연계성이 높아짐에 따라, 제어시스템설계에서 보다 내구성이 강하고 제어효과의 응답성이 빠르며 정도 또한 높은 제어장치의 필요성이 요구되고 있다. 본 연구는 전륜 및 후륜의 위치와 주행속도관계에 따른 능동현가시스템을 해석하여 위와 같은 빠른 응답성과 높은 정도의 제어가 가능한 제어시스템을 해석, 설계하기 위하여 지능형 제어시스템의 적용에 관한 고찰을 하였다. 그리고 제어대상시스템에 대한 지능형 제어시스템을 설계하기 위한 모델링 및 적용방법을 수식적으로 해석하였으며, 능동 현가장치의 제어시스템설계에 중요한 내외란성 향상을 위한 지능형 강인제어시스템설계에 적용하는 방법에 관해 고찰하였다.

  • PDF

취약면적법과 DMEA를 활용한 지상전투차량 유공압 현가장치의 취약성 평가 (The Vulnerability Assessment of Hydro-pneumatic Suspension of Ground Combat Vehicles Using Vulnerable Area Method and DMEA)

  • 남명훈;박강;박우성;유철
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.141-149
    • /
    • 2017
  • Vulnerability assesses the loss of major performance functions of GCV (Ground Combat Vehicles) when it is hit by enemy's shell. To decide the loss of major functions, it is determined what effects are on the performance of GCV when some components of GCV are failed. M&S (Modeling and Simulation) technology is used to vulnerability assessment. The hydro-pneumatic suspension is used as a sample part. The procedures of vulnerability assessment of the hydro-pneumatic suspension are shown as follows: 1) The components of the suspension are defined, and shot lines are generated evenly around the part. 2) The penetrated components are checked by using the penetration equation. 3) The function model of the suspension is designed by using IDEF0. 4) When the failure of the critical components of the suspension happens, its effect on the function of the suspension can be estimated using DMEA (Damage Mode and Effects Analysis). 5) The diagram of FTA (Fault Tree Analysis) is designed by exploiting DMEA. 6) The damage probability of the suspension is calculated by using FTA and vulnerable area method. In this paper, SLAP (Shot Line Analysis Program) which was developed based on COVART methodology. SLAP calculates the damage probability and visualizes the vulnerable areas of the suspension.

Suspension Culture of an Antibacterial Peptide Producing Cell Line from Bombina orientalis

  • KIM, YONG-HWAN;JAE-WON YANG;CHAN-WHA KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.461-465
    • /
    • 1998
  • The suspension culture of an anchorage-dependent cell line (Bok-l) from Bombina orientalis was successful in respects of cost and efficiency. The amount of cells obtained from the suspension culture was almost equivalent to that from the anchorage-dependent culture. This result shows the possibility of suspension culture for scale-up. The cells in suspension produced an antibacterial peptide as much as anchorage-dependent cells did. The cell growth ($6.0\times10^6cells/m\ell$) and viability (>80%) at 10 rpm were higher than that at 0 rpm ($1.9\times10^6cells/m\ell$, 65~80%) and 30 rpm ($1.8\times10^6cells/m\ell$ 40~76%). The size of cells became smaller at the agitation rate of 30 rpm. The antibacterial activities of cell extracts from suspension cultured cells were confirmed against gram-negative and gram-positive bacteria by the inhibition zone assay and the liquid growth inhibition assay.

  • PDF

전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가 (Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension)

  • 성금길;최승복;박민규
    • 한국소음진동공학회논문집
    • /
    • 제20권5호
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Contactless Suspension and Propulsion of Glass Panels by Electrostatic Forces

  • Jeon, Jong-Up;Park, Kyu-Yeol;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.950-955
    • /
    • 2004
  • In the manufacture of liquid crystal display devices, there is a strong demand for contactless glass plate handling devices that can manipulate a glass plate without contaminating or damaging it. To fulfill this requirement, an electrostatic transportation device for glass plates is proposed. This device can directly drive a glass plate and simultaneously provide contactless suspension by electrostatic forces. To accomplish these two functions, a feedback control strategy and the operational principle of an electrostatic induction motor are utilized. The stator possesses electrodes which exert electrostatic forces on the glass plate and are divided into a part responsible for suspension and one for transportation. To accomplish dynamic stability and a relatively fast suspension initiation time, the structure of the electrode for suspension possesses many boundaries over which potential differences are formed. In this paper, an electrode pattern suitable for the suspension of glass plates is described, followed by the structure of the transportation device and its operational principle. Experimental results show that the glass plate has been transported with a speed of approximately 25.6 mm/s while being suspended stably at a gap length of 0.3 mm.

  • PDF

Design of Multilayered Suspension Mechanism for Differential Type Mobile Robot

  • Park, Jin-Ho;Roh, Se-Gon;Park, Ki-Heung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.859-864
    • /
    • 2003
  • This paper presents a design for the novel suspension mechanism of a two-wheeled mobile robot having two casters which is used for indoor environment. Although the indoor environment is less rough than the outdoor one, the fixed caster mechanism has some problems such as causing the robot to be immovable because robot's driving wheels do not have contact with the ground. Therefore, we tried installing a spring-damper suspension mechanism to keep driving capability and to remove pitching phenomenon. However, this suspension mechanism also has the problem, which the robot body inclined by disturbances does not return to the initial position. To deal with above problems and to accomplish desired performances, we designed the Multilayered Suspension Mechanism, which has springs and dampers working partially according to the inclined angle and angular velocity of robot body concerned with pitching. To analyze design, the equations of motion describing their dynamics were developed. Using the equations, simulation results show the improved performance. We confirm the usefulness of the Multilayered Suspension Mechanism by construction and test of a actual prototype.

  • PDF

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

승용차 알루미늄 멀티링크 현가장치 코너모듈의 실험적 정강도 특성 평가 (Experimental Static Strength Evaluation of a Passenger Car Aluminium Multi-link Suspension Corner Module)

  • 조원용;최규재
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.166-173
    • /
    • 2013
  • An aluminum suspension corner module is widely used in high class passenger cars to reduce vehicle weight and improve fuel economy. According to the change of material and suspension type, the evaluation of the static strength and failure mode of the corner module is important. In this study, static strength and failure mode analysis of aluminium multi-link suspension corner module is presented. Static strength test system is designed and static failure mode tests of the corner module are carried out in longitudinal, lateral, and vertical direction. From the resuls of the tests we found that the failure modes are different compare to those of the steel corner module. The static failure modes and load-displacement curves of this study will be used as a guidance in design of a passenger car aluminium multi-link suspension corner module.

전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어 (Design and Control of a MR Shock Absorber for Electronic Control Suspension)

  • 성금길;최승복
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

자동차 알루미늄 서스펜션 암 곡률압출공정에 관한 연구 (A Study on The Curvature Extrusion for Automotive Aluminum Suspension Arm)

  • 이상곤;김병민;오개희
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.71-77
    • /
    • 2009
  • In the automotive industry, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded components are used for the design of frame parts. This study investigates the curvature extrusion process to produce the aluminum curved suspension arm. In the curvature extrusion process, the bending process is simultaneously carried out with the extrusion process. Firstly, porthole extrusion was investigated by using FE analysis to produce aluminum suspension arm. And then the bending process condition was determined to produce the final suspension arm with the required curvature. In this research, the guide roll movement causes the bending of extruded product. The moving distance and velocity of guide roll were controlled to meet the required curvature of suspension arm. Finally, the curved suspension arm was manufactured by the curvature extrusion experiment under the proposed curvature extrusion condition.