• Title/Summary/Keyword: SURFACE CRYSTALLIZATION

Search Result 432, Processing Time 0.026 seconds

Crystallization and Phase Transition of TiO2Nanotubes by Heat Treatment. (열처리 조건에 따른 TiO2 나노튜브의 결정구조 및 형상 변화)

  • Lee, Ju-Yeong;Mun, Seong-Mo;Jeong, Yong-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.319-319
    • /
    • 2012
  • 수용액에서 양극산화법을 이용하여 티타늄 표면에 $TiO_2$ 나노튜브를 형성시켰고, XRD 및 전자현미경을 통해 열처리를 한 $TiO_2$ 나노튜브 소재표면, 계면구조를 관찰하였으며, 이는 향후 나노튜브의 결정구조를 제어할 수 있는 자료로 활용 될 것으로 기대된다.

  • PDF

Influence of MAO Conditions on TiO2 Microstructure and Its Photocatalytic Activity (MAO 공정 변수가 TiO2 산화피막의 구조 및 광촉매 특성에 미치는 영향)

  • Kim, Jeong-Gon;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.196-203
    • /
    • 2012
  • $TiO_2$ was successfully formed on a Ti specimen by MAO (Micro-Arc-Oxidation) method treated in $Na_3PO_4$ electrolyte. This study deals with the influence of voltage and working time on the change of surface microstructure and phase composition. Voltage affected the forming rate of the oxidized layer and surface microstructure where, a low voltage led to a high surface roughness, more holes and a thin oxidized layer. On the other hand, a high voltage led to more dense surface structure, wider surface holes, a thick layer and fewer holes. Higher voltage increases photocatalytic activity because of better crystallization of the oxidized layer and good phase composition with anatase and rutile $TiO_2$, which is able to effectively separate excited electrons and holes at the surface.

Electrodeposition of CuInSe2 Photovoltaic Thin Films and Growth Morphology (CuInSe2 태양전지 박막의 전해증착 및 성장형상)

  • Gho, Jung-Hwan;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • $CuInSe_2$ (CIS) thin films were electrodeposited on Mo-coated glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ ions, depending on deposition parameters such as deposition potential (-0.4 to -0.8 V[SCE]) and pH (1.7 to 1.9). The influences of PH and deposition potential on the atomic composition of Cu, In, and Se in the deposited films were observed. The best chemical composition, approaching 1:1:2 atomic ratio for the elements, was achieved at -0.5 V (SCE) and pH 1.8. The as-deposited films showed low crystallinity and were annealed at 300 to $500^{\circ}C$ for 30 min to improve crystallization. The surface morphologies, microstructures, and crystallographic structures of the annealed films as well as the as-deposited films were analyzed with AFM, SEM, and XRD. The defects of spherical particles appeared on the surfaces of CIS thin films in the as-deposited state and decreased in size and number with increasing annealing temperatures. Additionally, the crystallization to chalcopyrite structure and surface roughness (Ra) of the as-deposited thin films were improved with the annealing process.

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.

Synthesis of FAU(Faujasite)-type Zeolite with Variation of Synthesis Condition (합성조건의 변화에 따른 FAU(Faujasite)형 제올라이트의 합성)

  • 임형미;김봉영;남중희;안병길;오성근;정상진
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The effect of synthesis condition, type of starting materials, mole ratio, mixing. aging, and crystallization temperature and time, on the size of FAU-type zeolite has been studied. Different mixing route may lead to the different phase of zeolite even with the same starting materials. In general, the size of particles is smaller after aging, especially at lower aging temperature. Two step mixture gel preparation method resulted to not only the reduction of crystallization time but also that of particle size, but without the aging of two mixture gels before the preparation of the overall gel in the second step, only the crystallization time was reduced, not the particle size. The FAU-type zeolite with average particle size 0.4$\mu$m and BET surface area 838 $m^2$/g was obtained from starting materials of liquid sodium silicate, sodium aluminate, and sodium hydroxide with two step preparation of mixture gel, aging of the mixture gels in two steps, which effectively reduced the crystallization time and particle size.

Effects of Crystallization and Seeding on Characteristics of Al2O3-ZrO2 Powder Prepared by a Sol-Gel Method (Sol-Gel법에 의한 Al2O3-ZrO2계 분말제조에 있어서 결정화 및 Seeding 효과)

  • 오한석;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • $\alpha$-Al2O3-15m/o ZrO2 powder was prepared by a sol-gel method from boehmite and zirconium acetate. The transformation temperature of boehmite to $\alpha$-Al2O3 in the system Al2O3-ZrO2 was increased due to the coupled crystallization. On the other hand, the transformation temperature from boehmite to $\alpha$-Al2O3-15m/o ZrO2 could be prepared at 110$0^{\circ}C$ for 100min. The specific surface area of the product of $\alpha$-Al2O3-15m/o ZrO2 was 13.2$m^2$/g.

  • PDF

Controlling Preferred Orientation of ITO Thin Films by RF-Magnetron Sputtering Method

  • Park, Ju-O;Kim, Jae-Hyung;Lee, Joon-Hyung;Kim, Jeong-Joo;Cho, Sang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.818-821
    • /
    • 2003
  • Sn-doped $In_{2}O_{3}$ (ITO) thin film is one of the materials widely on research not only in the academic fields but also in industrial fields because of their transparency, high conductivity and good adhesion characteristics on substrate. ITO thin films are usually preferred oriented to one of the (222), (400), and (440) planes during crystallization process, which is dependent on processing variables. The preferred orientation affects electrical, optical and etching properties of the films. In this study, thin films of preferred oriented in different orientation were fabricated by controlling processing variables. The crystallization behavior, grain size, surface roughness, transparency and electrical properties of the thin films in different orientation were examined.

  • PDF

Consolidation of Cu-based amorphous particles (Cu계 비정질 입자의 가압 성형)

  • Kang E. Y.;Chung Y. H.;Yoo H. G.;Park J. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.273-276
    • /
    • 2005
  • Packing characteristics of amorphous alloy particles were investigated by scanning electron microscopy, compositional analysis, micro-hardness test and finite element method (FEM). Electroless Ni-plating was made on the surface of the Cu-based amorphous particles before consolidation in ambient atmosphere at an intermediate region of glass transition and crystallization temperatures $(T_g\;and\;T_x)$. Some parts of the Ni-layer in the interfaces of the consolidated particles disappeared, while some of them still remained without appreciable change in compositions. No cracks or fractures were found in the particles, which may occur at low temperatures below or near $T_g$ as anticipated by the FEM analysis. Crystallization and change in hardness were not observed after consolidation.

  • PDF

A Study on The Glass-Ceramics Containing Fluorine (불소 함유 결정화유리에 관한 연구)

  • 박용완;현부성;김창렬
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.815-821
    • /
    • 1992
  • The batches having excess SiO2 to tetrasilicic mica KMg2.5 (Si4O10)F2 were melted at 1450℃. The fabricated samples were heat-treated for the nucleation and the crystallization. The crystallized samples were investigated on several properties. The tetrasilicic mica composition with excess 10 wt% SiO2 was successful both in glassifying and in crystallizing. The optimum temperatures for the nucleation and the crystallization were 680℃ and 1000-1100℃, respectively. The mica and the cristobalite crystallines were identified after heat-treatment. The properties of the samples processed appropriately were as follows, bulk density 2.64g/㎤, thermal expansion coefficient ∼80×10-7/℃, Vicker's hardness ∼105 Kgf/㎟, bending strength ∼666Kgf/㎟, dielectric constant ∼11.1, tan δ 2.5%, volume resistivity 2.35×107∼1.3×1011{{{{ OMEGA }}cm, surface roughness 6.984㎛.

  • PDF

Corrosion Protection Performance of PVDF/PMMA-Blended Coatings by Electrochemical Impedance Method

  • Kim, Yun Hwan;Kwon, Yong Sung;Shon, Min Young;Moon, Myung Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The effect of mixing ratio on the corrosion protection of carbon steel coated by a film composed of poly(vinylidene) fluoride (PVDF) and poly(methyl methacrylate) (PMMA) was examined using electrochemical impedance spectroscopy. Surface crystallization behavior and thermal properties of the PVDF/PMMA coated carbon steel were evaluated using polarized optical microscopy and differential scanning calorimetry, respectively. A Maltese cross-pattern spherulite crystal was observed in the PVDF/PMMA coating film, which became more apparent with increasing PVDF content. The highest corrosion protection performance was achieved with 60 wt.% PVDF-coated carbon steel, and delamination and corrosion reactions were observed for 20 wt.% PVDF-coated carbon steel. Further, corrosion protection performance with an amorphous/crystal mixture (PVDF/PMMA, 60/40 (w/w)) was better than those observed in the amorphous domain and the perfect-crystal domain of the PVDF/PMMA blended coating system.