• Title/Summary/Keyword: SURF Matching

Search Result 75, Processing Time 0.024 seconds

A panorama image generation method using FAST algorithm (FAST를 이용한 파노라마 영상 생성 방법)

  • Kim, Jong-ho;Ko, Jin-woong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.630-638
    • /
    • 2016
  • In this paper, a feature based panorama image generation algorithm using FAST(Features from Accelerated Segment Test) method that is faster than SIFT(Scale Invariant Feature Transform) and SURF(Speeded Up Robust Features) is proposed. Cylindrical projection is performed to generate natural panorama images with numerous images as input. The occurred error can be minimized by applying RANSAC(Random Sample Consensus) for the matching process. When we synthesize numerous images acquired from different camera angles, we use blending techniques to compensate the distortions by the heterogeneity of border line. In that way, we could get more natural synthesized panorama image. The proposed algorithm can generate natural panorama images regardless the order of input images and tilted images. In addition, the image matching can be faster than the conventional method. As a result of the experiments, distortion was corrected and natural panorama image was generated.

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

Place Recognition Method Using Quad Vocabulary Tree (쿼드 어휘 트리를 이용한 장소 인식 방법)

  • Park, Seoyeong;Hong, Hyunki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.569-577
    • /
    • 2016
  • Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.

Simultaneous Localization and Mapping For Swarm Robot (군집 로봇의 동시적 위치 추정 및 지도 작성)

  • Mun, Hyun-Su;Shin, Sang-Geun;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.296-301
    • /
    • 2011
  • This paper deals with the simultaneous localization and mapping system using cooperative robot. For recognizing environment, swarm robot uses the ultrasonic sensors and vision sensor. Ultrasonic sensors measure the distance information, and vision sensor recognizes the predefined landmark. we used SURF with excellent quality and fast matching in order to recognize landmark. Due to measurement error of sensors, we fusion them using particle filter for accurate localization and mapping. Finally, we show the feasibility of the proposed method through some experiments.

Ship Design Visualization System base on Augmented Reality (증강현실 기반의 선박설계 시각화 시스템)

  • Park, Mi-Jeong;Yoo, Seung-Hyeok;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.249-251
    • /
    • 2012
  • Augmented Reality (AR) enables the enhanced realism and interaction by providing the overlaid digital information on the user's view of the physical world. In this paper, we propose an AR-based ship design visualization system for presenting ship 3D model in smart phones or table PCs. The proposed system compute corner points and feature points by contour finding method and harris corner detector, and build a ship-design drawing database. By using SURF algorithm, key feature points are extracted from ship-design drawing image which is obtained by mobile camera. Then ship-design drawing image is recognized by matching the feature points stored in DB and extracted key feature points. 3D ship structures are visualized by overlaying the ship-design drawing image on the smart phone or table PC's screen. Compared to conventional 2D ship-design, proposed system helps to easily understand the structures of the ship and reduce the business design period. Thus, Enhanced competitiveness of business is expected.

  • PDF

Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU (OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화)

  • Kang, Seung Heon;Lee, Seung-Jae;Lee, Man Hee;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-328
    • /
    • 2014
  • In this paper, we parallelize the popular feature detection algorithms, i.e. SIFT and SURF, and its application to fast panoramic image generation on the latest embedded GPU. Parallelized algorithms are implemented using recently developed OpenCL as the embedded GPGPU software platform. We compare the implementation efficiency and speed performance of conventional OpenGL Shading Language and OpenCL. Experimental result shows that implementation on OpenCL has comparable performance with GLSL. Compared with the performance on the embedded CPU in the same application processor, the embedded GPU runs 3~4 times faster. As an example of using feature extraction, panorama image synthesis is performed on embedded GPU by applying image matching using detected features.

The Implementation of Automatic Compensation Modules for Digital Camera Image by Recognition of the Eye State (눈의 상태 인식을 이용한 디지털 카메라 영상 자동 보정 모듈의 구현)

  • Jeon, Young-Joon;Shin, Hong-Seob;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • This paper examines the implementation of automatic compensation modules for digital camera image when a person is closing his/her eyes. The modules detect the face and eye region and then recognize the eye state. If the image is taken when a person is closing his/her eyes, the function corrects the eye and produces the image by using the most satisfactory image of the eye state among the past frames stored in the buffer. In order to recognize the face and eye precisely, the pre-process of image correction is carried out using SURF algorithm and Homography method. For the detection of face and eye region, Haar-like feature algorithm is used. To decide whether the eye is open or not, similarity comparison method is used along with template matching of the eye region. The modules are tested in various facial environments and confirmed to effectively correct the images containing faces.

Laser Image SLAM based on Image Matching for Navigation of a Mobile Robot (이동 로봇 주행을 위한 이미지 매칭에 기반한 레이저 영상 SLAM)

  • Choi, Yun Won;Kim, Kyung Dong;Choi, Jung Won;Lee, Suk Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This paper proposes an enhanced Simultaneous Localization and Mapping (SLAM) algorithm based on matching laser image and Extended Kalman Filter (EKF). In general, laser information is one of the most efficient data for localization of mobile robots and is more accurate than encoder data. For localization of a mobile robot, moving distance information of a robot is often obtained by encoders and distance information from the robot to landmarks is estimated by various sensors. Though encoder has high resolution, it is difficult to estimate current position of a robot precisely because of encoder error caused by slip and backlash of wheels. In this paper, the position and angle of the robot are estimated by comparing laser images obtained from laser scanner with high accuracy. In addition, Speeded Up Robust Features (SURF) is used for extracting feature points at previous laser image and current laser image by comparing feature points. As a result, the moving distance and heading angle are obtained based on information of available points. The experimental results using the proposed laser slam algorithm show effectiveness for the SLAM of robot.

Evaluation of Feature Extraction and Matching Algorithms for the use of Mobile Application (모바일 애플리케이션을 위한 특징점 검출 연산자의 비교 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Mobile devices like smartphones and tablets are becoming increasingly capable in terms of processing power. Although they are already used in computer vision, no comparable measurement experiments of the popular feature extraction algorithm have been made yet. That is, local feature descriptors are widely used in many computer vision applications, and recently various methods have been proposed. While there are many evaluations have focused on various aspects of local features, matching accuracy, however there are no comparisons considering on speed trade-offs of recent descriptors such as ORB, FAST and BRISK. In this paper, we try to provide a performance evaluation of feature descriptors, and compare their matching precision and speed in KD-Tree setup with efficient computation of Hamming distance. The experimental results show that the recently proposed real valued descriptors such as ORB and FAST outperform state-of-the-art descriptors such SIFT and SURF in both, speed-up efficiency and precision/recall.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.