• Title/Summary/Keyword: SURF

Search Result 468, Processing Time 0.028 seconds

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

The Study on Marker-less Tracking Algorithm Performance based on Mobile Augmented Reality (모바일 증강현실 기반의 마커리스 추적 알고리즘 성능 연구)

  • Yoon, Ji-Yean;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1032-1037
    • /
    • 2012
  • Augmented reality (AR) is augmented virtual information on the real world with real-time. And user can interact with information. In this paper, Marker-less tracking algorithm has been studied, for implement the augmented reality system on a mobile environment. In marker-less augmented reality, users do not need to attach the markers, and constrained the location. So, it's convenient to use. For marker-less tracking, I use the SURF algorithm based on feature point extraction in this paper. The SURF algorithm can be used on mobile devices because of the computational complexity is low. However, the SURF algorithm optimization work is not suitable for mobile devices. Therefore, in this paper, in order to the suitable tracking in mobile devices, the SURF algorithm was tested in a variety of environments. And ways to optimize has been studied.

Modified Speeded Up Robust Features(SURF) for Performance Enhancement of Mobile Visual Search System (모바일 시각 검색 시스템의 성능 향상을 위하여 개선된 Speeded Up Robust Features(SURF) 알고리듬)

  • Seo, Jung-Jin;Yoona, Kyoung-Ro
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.388-399
    • /
    • 2012
  • In the paper, we propose enhanced feature extraction and matching methods for a mobile environment based on modified SURF. We propose three methods to reduce the computational complexity in a mobile environment. The first is to reduce the dimensions of the SURF descriptor. We compare the performance of existing 64-dimensional SURF with several other dimensional SURFs. The second is to improve the performance using the sign of the trace of the Hessian matrix. In other words, feature points are considered as matched if they have the same sign for the trace of the Hessian matrix, otherwise considered not matched. The last one is to find the best distance-ratio which is used to determine the matching points. We find the best distance-ratio through experiments, and it gives the relatively high accuracy. Finally, existing system which is based on normal SURF method is compared with our proposed system which is based on these three proposed methods. We present that our proposed system shows reduced response time while preserving reasonably good matching accuracy.

FPGA Design of a SURF-based Feature Extractor (SURF 알고리즘 기반 특징점 추출기의 FPGA 설계)

  • Ryu, Jae-Kyung;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.368-377
    • /
    • 2011
  • This paper explains the hardware structure of SURF(Speeded Up Robust Feature) based feature point extractor and its FPGA verification result. SURF algorithm produces novel scale- and rotation-invariant feature point and descriptor which can be used for object recognition, creation of panorama image, 3D Image restoration. But the feature point extraction processing takes approximately 7,200msec for VGA-resolution in embedded environment using ARM11(667Mhz) processor and 128Mbytes DDR memory, hence its real-time operation is not guaranteed. We analyzed integral image memory access pattern which is a key component of SURF algorithm to reduce memory access and memory usage to operate in c real-time. We assure feature extraction that using a Vertex-5 FPGA gives 60frame/sec of VGA image at 100Mhz.

FPGA Implementation of SURF-based Feature extraction and Descriptor generation (SURF 기반 특징점 추출 및 서술자 생성의 FPGA 구현)

  • Na, Eun-Soo;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.483-492
    • /
    • 2013
  • SURF is an algorithm which extracts feature points and generates their descriptors from input images, and it is being used for many applications such as object recognition, tracking, and constructing panorama pictures. Although SURF is known to be robust to changes of scale, rotation, and view points, it is hard to implement it in real time due to its complex and repetitive computations. Using 3.3 GHz Pentium, in our experiment, it takes 240ms to extract feature points and create descriptors in a VGA image containing about 1,000 feature points, which means that software implementation cannot meet the real time requirement, especially in embedded systems. In this paper, we present a hardware architecture that can compute the SURF algorithm very fast while consuming minimum hardware resources. Two key concepts of our architecture are parallelism (for repetitive computations) and efficient line memory usage (obtained by analyzing memory access patterns). As a result of FPGA synthesis using Xilinx Virtex5LX330, it occupies 101,348 LUTs and 1,367 KB on-chip memory, giving performance of 30 frames per second at 100 MHz clock.

Matching Points Extraction Between Optical and TIR Images by Using SURF and Local Phase Correlation (SURF와 지역적 위상 상관도를 활용한 광학 및 열적외선 영상 간 정합쌍 추출)

  • Han, You Kyung;Choi, Jae Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Various satellite sensors having ranges of the visible, infrared, and thermal wavelengths have been launched due to the improvement of hardware technologies of satellite sensors development. According to the development of satellite sensors with various wavelength ranges, the fusion and integration of multisensor images are proceeded. Image matching process is an essential step for the application of multisensor images. Some algorithms, such as SIFT and SURF, have been proposed to co-register satellite images. However, when the existing algorithms are applied to extract matching points between optical and thermal images, high accuracy of co-registration might not be guaranteed because these images have difference spectral and spatial characteristics. In this paper, location of control points in a reference image is extracted by SURF, and then, location of their corresponding pairs is estimated from the correlation of the local similarity. In the case of local similarity, phase correlation method, which is based on fourier transformation, is applied. In the experiments by simulated, Landsat-8, and ASTER datasets, the proposed algorithm could extract reliable matching points compared to the existing SURF-based method.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

On the mitigation of surf-riding by adjusting center of buoyancy in design stage

  • Yu, Liwei;Ma, Ning;Gu, Xiechong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.292-304
    • /
    • 2017
  • High-speed vessels are prone to the surf-riding in adverse quartering seas. The possibility of mitigating the surf-riding of the ITTC A2 fishing vessel in the design stage is investigated using the 6-DOF weakly non-linear model developed for surf-riding simulations in quartering seas. The longitudinal position of the ship's center of buoyancy (LCB) is chosen as the design parameter. The adjusting of LCB is achieved by changing frame area curves, and hull surfaces are reconstructed accordingly using the Radial Basis Function (RBF). Surf-riding motions in regular following seas for cases with different LCBs and Froude numbers are simulated using the numerical model. Results show that the surf-riding cannot be prevented by the adjusting of LCB. However, it occurs with a higher threshold speed when ship's center of buoyancy (COB) is moved towards stem compared to moving towards stern, which is mainly due to the differences on wave resistance caused by the adjusting of LCB.

GPU based Fast Recognition of Artificial Landmark for Mobile Robot (주행로봇을 위한 GPU 기반의 고속 인공표식 인식)

  • Kwon, Oh-Sung;Kim, Young-Kyun;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.688-693
    • /
    • 2010
  • Vision based object recognition in mobile robots has many issues for image analysis problems with neighboring elements in dynamic environments. SURF(Speeded Up Robust Features) is the local feature extraction method of the image and its performance is constant even if disturbances, such as lighting, scale change and rotation, exist. However, it has a difficulty of real-time processing caused by representation of high dimensional vectors. To solve th problem, execution of SURF in GPU(Graphics Processing Unit) is proposed and implemented using CUDA of NVIDIA. Comparisons of recognition rates and processing time for SURF between CPU and GPU by variation of robot velocity and image sizes is experimented.