• 제목/요약/키워드: SUMO (Small Ubiquitin-like Modifier)

검색결과 9건 처리시간 0.024초

Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Ahn, Hye-Rim;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • 제11권1호
    • /
    • pp.39-50
    • /
    • 2007
  • Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

벼의 small ubiquitin-like modifier E3 ligase, OsSIZ1 돌연변이체의 특성 분석 (Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice)

  • 박형철;구성철;김훈;최원균;윤대진
    • Journal of Plant Biotechnology
    • /
    • 제39권4호
    • /
    • pp.235-241
    • /
    • 2012
  • 식물체에서 sumoylation 기작은 성장 및 발달에 중요한 기능을 수행할 것이다. 특히, SUMO E3 ligase는 SUMO 단백질을 목적 단백질로 전달해주는 마지막 단계의 sumoylation 기작 구성요소이며, 다양한 신호전달에 특이성을 나타내는 것으로 보고되고 있다. 본 연구에서는 벼에서 SUMO E3 ligase, SIZ1 유전자에 T-DNA가 삽입된 Ossiz1-2 돌연변이 식물체를 분석하였다. 그리고, OsSIZ1 단백질이 OsSUMO1 단백질과 상호작용함으로써 OsSIZ1이 SUMO E3 ligase의 기능을 수행할 것으로 예측하였다. Ossiz1-2 돌연변이 식물체는 형태학적으로 발달과 성장의 다양한 부분에서 미성숙상태로 유지됨이 보였다. 특히, 야생형인 동진벼와 비교하여 초장의 성장 및 등숙율에서 상당히 낮은 정도를 보여 주었다. 이와 같이, 벼에서 SUMO E3 ligase로써 OsSIZ1 단백질의 생리학적인 기능은 성장과 발달 그리고, 수확량에 관여하는 단백질을 sumoylation 시키는 기작에서 역할을 수행할 것으로 사려된다.

Response and transcriptional regulation of rice SUMOylation system during development and stress conditions

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.103-109
    • /
    • 2010
  • Modification of proteins by the reversible covalent addition of the small ubiquitin like modifier (SUMO) protein has important consequences affecting target protein stability, sub-cellular localization, and protein-protein interactions. SUMOylation involves a cascade of enzymatic reactions, which resembles the process of ubiquitination. In this study, we characterized the SUMOylation system from an important crop plant, rice, and show that it responds to cold, salt and ABA stress conditions on a protein level via the accumulation of SUMOylated proteins. We also characterized the transcriptional regulation of individual SUMOylation cascade components during stress and development. During stress conditions, majority of the SUMO cascade components are transcriptionally down regulated. SUMO conjugate proteins and SUMO cascade component transcripts accumulated differentially in various tissues during plant development with highest levels in reproductive tissues. Taken together, these data suggest a role for SUMOylation in rice development and stress responses.

SUMOylation Code in Cancer Development and Metastasis

  • Kim, Keun Il;Baek, Sung Hee
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.247-253
    • /
    • 2006
  • Protein modification by small ubiquitin-like modifier (SUMO) controls diverse cellular functions of protein targets including transcription factors and coregulators mainly in the nucleus and participates in maintaining cellular homeostasis. In addition, SUMO system plays important roles in DNA damage repair and maintaining genome integrity. Thus, in some cases, the loss of control on SUMOylation or deSUMOylation processes causes a defect in maintaining homeostasis and hence gives a cue to cancer development. Furthermore, recent study showed that SUMO system is also involved in cancer metastasis. In this review, we will summarize and discuss the possible role of SUMO system in cancer development and metastasis.

Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate

  • Grant, Melissa M.
    • BMB Reports
    • /
    • 제43권11호
    • /
    • pp.720-725
    • /
    • 2010
  • The small ubiquitin-like modifier (SUMO) proteins have been implicated in the pathology of a number of diseases, including neurodegenerative diseases. The conjugation machinery for SUMOylation consists of a number of proteins which are redox sensitive. Here, under oxidative stress ($100{\mu}M$ hydrogen peroxide), antioxidant ($100{\mu}M$ ascorbate) or control conditions 169 proteins were identified by electospray ionisation fourier transform ion cyclotron resonance mass spectrometry. The majority of these proteins (70%) were found to contain SUMOylation consensus sequences. From the remaining proteins a small number (12%) were found to contain possible SUMO interacting motifs. The proteins identified included DNA and RNA binding proteins, structural proteins and proteasomal proteins. Several of the proteins identified under oxidative stress conditions had previously been identified as SUMOylated proteins, thus validating the method presented.

Identification of Chinese Cabbage Sentrin as a Suppressor of Bax-Induced Cell Death in Yeast

  • Sawitri, Widhi Dyah;Slameto, Slameto;Sugiharto, Bambang;Kim, Kyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.600-606
    • /
    • 2012
  • Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier-1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-$Leu^-$-$Ura^-$ medium. The results suggest that BrSE ($\underline{B}$rassica rapa $\underline{S}$entrin $\underline{E}$ST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

대장균에서 SUMO fusion tag을 이용하여 항균펩타이드인 moricin의 발현 (Expression of Antimicrobial Peptide (AMP), Moricin Using SUMO Fusion Tag in Escherichia coli)

  • 안동규;박선일;김순영
    • 생명과학회지
    • /
    • 제32권12호
    • /
    • pp.956-961
    • /
    • 2022
  • 식물에서 재조합 단백질을 생산하는 것은 여러 가지 장점이 있다. 식물은 인간 병원체에 감염되지 않으며, 박테리아와 달리 내독소를 생산하지 않는다. 엽록체 형질전환은 핵 형질전환에 비해 안정적으로 많은 유전자를 발현시킬 수 있는 등 다양한 이점이 있다. 항균펩타이드(AMP)는 많은 동물들이 가지고 있는 선천면역의 일종으로, 소량이라도 항균력을 가지며, 기존 항생제와 다르게 쉽게 내성균이 생기지 않는다. 항균펩타이드인 moricin은 누에나방의 한 종류인 Bombyx mori에서 분리되었으며, C-말단은 염기성 아미노산이 모여 있고, N-말단은 α-helix 구조를 가지고 있다. Moricin을 생산할 때 SUMO와 6xHis tag를 융합하여 사용하였다. 발현된 moricin의 용해성과 안정성을 높이기 위해 SUMO를, 발현된 moricin을 정제하기 위하여 6xHis tag를 이용하였다. 본 연구에서 담배 엽록체와 대장균에서 항균펩타이드를 발현하기 위한 형질전환벡터를 제작하였다. 또한, 엽록체와 박테리아의 전사 및 번역의 유사성을 이용하여 대장균에서 단백질의 발현을 확인하였다. 발현된 moricin을 Ni 컬럼 및 SUMOase를 처리하여 정제하고 agar diffusion assay를 이용하여 항균 활성을 확인하였다.

Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function

  • Nguyen, Khanh Hoang Viet;Dao, Trong Khoa;Nguyen, Hong Duong;Nguyen, Khanh Hai;Nguyen, Thi Quy;Nguyen, Thuy Tien;Nguyen, Thi Mai Phuong;Truong, Nam Hai;Do, Thi Huyen
    • Animal Bioscience
    • /
    • 제34권5호
    • /
    • pp.867-879
    • /
    • 2021
  • Objective: Fibronectin 3 (FN3) and immunoglobulin like modules (Ig) are usually collocated beside modular cellulase catalytic domains. However, very few researches have investigated the role of these modules. In a previous study, we have sequenced and analyzed bacterial metagenomic DNA in Vietnamese goats' rumen and found that cellulase-producing bacteria and cellulase families were dominant. In this study, the properties of modular cellulases and the role of a FN3 in unique endoglucanase belonging to glycosyl hydorlase (GH) family 5 were determined. Methods: Based on Pfam analysis, the cellulases sequences containing FN3, Ig modules were extracted from 297 complete open reading frames (ORFs). The alkaline, thermostability, tertiary structure of deduced enzymes were predicted by AcalPred, TBI software, Phyre2 and Swiss models. Then, whole and truncated forms of a selected gene were expressed in Escherichia coli and purified by His-tag affinity column for assessment of FN3 ability to enhance enzyme activity, solubility and conformation. Results: From 297 complete ORFs coding for cellulases, 148 sequences containing FN3, Ig were identified. Mostly FN3 appeared in 90.9% beta-glucosidases belonging to glycosyl hydrolase family 3 (GH3) and situated downstream of catalytic domains. The Ig was found upstream of 100% endoglucanase GH9. Rarely FN3 was seen to be situated downstream of X domain and upstream of catalytic domain endoglucanase GH5. Whole enzyme (called XFN3GH5 based on modular structure) and truncate forms FN3, XFN3, FN3GH5, GH5 were cloned in pET22b (+) and pET22SUMO to be expressed in single and fusion forms with a small ubiquitin-related modifier partner (S). The FN3, SFN3 increased GH5 solubility in FN3GH5, SFN3GH5. The SFN3 partly served for GH5 conformation in SFN3GH5, increased modules interaction and enzyme-soluble substrate affinity to enhance SXFN3GH5, SFN3GH5 activities in mixtures. Both SFN3 and SXFN3 did not anchor enzyme on filter paper but exfoliate and separate cellulose chains on filter paper for enzyme hydrolysis. Conclusion: Based on these findings, the presence of FN3 module in certain cellulases was confirmed and it assisted for enzyme conformation and activity in both soluble and insoluble substrate.