DOI QR코드

DOI QR Code

Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice

벼의 small ubiquitin-like modifier E3 ligase, OsSIZ1 돌연변이체의 특성 분석

  • Park, Hyeong Cheol (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Koo, Sung Cheol (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Hun (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Choi, Wonkyun (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 박형철 (경상대학교 대학원 응용생명과학부, 식물생명공학연구소) ;
  • 구성철 (경상대학교 대학원 응용생명과학부, 식물생명공학연구소) ;
  • 김훈 (경상대학교 대학원 응용생명과학부, 식물생명공학연구소) ;
  • 최원균 (경상대학교 대학원 응용생명과학부, 식물생명공학연구소) ;
  • 윤대진 (경상대학교 대학원 응용생명과학부, 식물생명공학연구소)
  • Received : 2012.09.28
  • Accepted : 2012.10.12
  • Published : 2012.12.31

Abstract

Sumoylation is a reversible conjugation process that attaches the small ubiquitin modifier (SUMO) peptide to target proteins and regulates a wide variety of cellular functions in eucaryotes. As final step of the sumoylation, SUMO E3 ligases facilitate conjugation of SUMO to target proteins. To characterize the functions of the SUMO E3 ligases in Oryza sativa, we isolated a single recessive rice SUMO E3 ligase, Ossiz1-2 mutant. In addition, we also confirmed the interaction between OsSIZ1/-2 and OsSUMO1, respectively, by using an Agrobacterium-based tobacco luciferase transient expression system. Ossiz1-2 mutant exhibited approximately 20% reduction in growth and developmental units compared with wild type. Especially, number of filled seeds and total seed weight were dramatically decreased in the Ossiz1-2 mutant rice. Thus, these results suggest that sumoylation by the OsSIZ1 as SUMO E3 ligase plays an important role in regulating growth and development in rice.

식물체에서 sumoylation 기작은 성장 및 발달에 중요한 기능을 수행할 것이다. 특히, SUMO E3 ligase는 SUMO 단백질을 목적 단백질로 전달해주는 마지막 단계의 sumoylation 기작 구성요소이며, 다양한 신호전달에 특이성을 나타내는 것으로 보고되고 있다. 본 연구에서는 벼에서 SUMO E3 ligase, SIZ1 유전자에 T-DNA가 삽입된 Ossiz1-2 돌연변이 식물체를 분석하였다. 그리고, OsSIZ1 단백질이 OsSUMO1 단백질과 상호작용함으로써 OsSIZ1이 SUMO E3 ligase의 기능을 수행할 것으로 예측하였다. Ossiz1-2 돌연변이 식물체는 형태학적으로 발달과 성장의 다양한 부분에서 미성숙상태로 유지됨이 보였다. 특히, 야생형인 동진벼와 비교하여 초장의 성장 및 등숙율에서 상당히 낮은 정도를 보여 주었다. 이와 같이, 벼에서 SUMO E3 ligase로써 OsSIZ1 단백질의 생리학적인 기능은 성장과 발달 그리고, 수확량에 관여하는 단백질을 sumoylation 시키는 기작에서 역할을 수행할 것으로 사려된다.

Keywords

References

  1. Budhiraja R, Hermkes R, Müller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A (2009) Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol 149:1529-1540 https://doi.org/10.1104/pp.108.135053
  2. Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N-H (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952-2966 https://doi.org/10.1105/tpc.106.049981
  3. Chaikam V, Karlson DT (2010) Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB rep 43:103-109 https://doi.org/10.5483/BMBRep.2010.43.2.103
  4. Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou J-M (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol 146: 368-376
  5. Colby T, Matthai A, Boeckelmann A, Stuible HP (2006) SUMO-conjugating and SUMO-deconjugating enzymes fromArabidopsis. Plant Physiol 142:318-332 https://doi.org/10.1104/pp.106.085415
  6. Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 1695:113-131 https://doi.org/10.1016/j.bbamcr.2004.09.021
  7. Downes B, Vierstra RD (2005) Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem Soc Trans 33:393-399 https://doi.org/10.1042/BST0330393
  8. Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci USA 107:17415-17420 https://doi.org/10.1073/pnas.1005452107
  9. Garcia-Dominguez M, March-Diaz R, Reyes JC (2008) The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins. J Biol Chem 283:21469-21477 https://doi.org/10.1074/jbc.M708176200
  10. Hay RT (2005) Sumo: a history of modification. Mol Cell 18:1-12 https://doi.org/10.1016/j.molcel.2005.03.012
  11. Huang L, Yang S, Zhang S, Liu M, Lai J, Qi Y, Shi S, Wang J, Wang Y, Xie Q, Yang C (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60:666-678 https://doi.org/10.1111/j.1365-313X.2009.03992.x
  12. Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21: 2284-2297 https://doi.org/10.1105/tpc.109.068072
  13. Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2005) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123-132
  14. Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim W-Y, Van Oosten M, Hyun Y, Somers DE, Lee I, Yun D-J, Bressan RA, Hasegawa PM (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53:530-540
  15. Jonson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355-382 https://doi.org/10.1146/annurev.biochem.73.011303.074118
  16. Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung D-Y, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis: Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862-6872 https://doi.org/10.1074/jbc.M209694200
  17. Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79-90
  18. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPaseactivating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457-1470 https://doi.org/10.1083/jcb.135.6.1457
  19. Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci USA 107:16512-16517 https://doi.org/10.1073/pnas.1004181107
  20. Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitinlike post-translational modifications in plants. Trends Cell Biol 20:223-232 https://doi.org/10.1016/j.tcb.2010.01.007
  21. Miura K, Jin JB, Hasegawa PM (2007a) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495-502 https://doi.org/10.1016/j.pbi.2007.07.002
  22. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007b) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403-1414 https://doi.org/10.1105/tpc.106.048397
  23. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106:5418-5423 https://doi.org/10.1073/pnas.0811088106
  24. Miura K, Rus A, Sharkhuu A, Yokoi S, karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760-7765 https://doi.org/10.1073/pnas.0500778102
  25. Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181-3195 https://doi.org/10.1105/tpc.104.161220
  26. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321-4325 https://doi.org/10.1093/nar/8.19.4321
  27. Okada S, Nagabuchi M, Takamura Y, Nakagawa T, Shinmyozu K, Nakayama J-I, Tanaka K (2009) Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Plant Cell Physiol 50:1049-1061 https://doi.org/10.1093/pcp/pcp056
  28. Park HC, Choi W, Park HJ, Cheong MS, Koo YD, Shin G, Chung WS, Kim W-Y, Kim MG, Bressan RA, Bohnert HJ, Lee SY, Yun D-J (2011a) Identification and molecular properties of SUMO-binding proteins in Arabidopsis. Mol Cells 32:143-151 https://doi.org/10.1007/s10059-011-2297-3
  29. Park HC, Park J, Baek D, Yun D-J (2011b) Functional characterization of Arabidopsis thaliana BLH8, BEL1-like homeodomain 8 involved in environmental stresses. Korean J Plant Biotechnol 38:162-168 https://doi.org/10.5010/JPB.2011.38.2.162
  30. Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA, Lee SY, Bohnert HJ, Yun D-J (2010) Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ 33:1923-1934 https://doi.org/10.1111/j.1365-3040.2010.02195.x
  31. Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of sumoylation in Arabidopsis: heat-induced conjugation of SUMO1 and SUMO2 is essential. Plant Physiol 145:119-134 https://doi.org/10.1104/pp.107.102285
  32. Schmidt D, Muller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561-2574 https://doi.org/10.1007/s00018-003-3129-1
  33. Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690-699 https://doi.org/10.1038/nrm1200
  34. Smalle J, Vierstra RD (2004) The ubiquitin 26s proteasome proteolytic pathway. Annu Rev Plant Physiol Plant Mol Biol 55:555-590 https://doi.org/10.1146/annurev.arplant.55.031903.141801
  35. Thangasamy S, Guo C-L, Chuang M-H, Lai M-H, Chen J, Jauh G-Y (2011) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol 189:869-882 https://doi.org/10.1111/j.1469-8137.2010.03538.x
  36. van den Burg HA, Kini RK, Schuurink RC, Takken FLW (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22:1998-2016 https://doi.org/10.1105/tpc.109.070961
  37. Wang H, Makeen K, Yan Y, Cao Y, Sun S, Xu G (2011) OsSIZ1 regulates the vegetative growth and reproductive development in rice. Plant Mol Biol Rep 29:411-417 https://doi.org/10.1007/s11105-010-0232-y
  38. Welchman RL, Gordon D, Mayer RJ (2005) Ubiquitin and ubiquitination-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6:599-609 https://doi.org/10.1038/nrm1700
  39. Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun D-J, Bressan RA, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 142:1548-1558 https://doi.org/10.1104/pp.106.088831