Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.11.720

Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate  

Grant, Melissa M. (School of Dentistry, University of Birmingham)
Publication Information
BMB Reports / v.43, no.11, 2010 , pp. 720-725 More about this Journal
Abstract
The small ubiquitin-like modifier (SUMO) proteins have been implicated in the pathology of a number of diseases, including neurodegenerative diseases. The conjugation machinery for SUMOylation consists of a number of proteins which are redox sensitive. Here, under oxidative stress ($100{\mu}M$ hydrogen peroxide), antioxidant ($100{\mu}M$ ascorbate) or control conditions 169 proteins were identified by electospray ionisation fourier transform ion cyclotron resonance mass spectrometry. The majority of these proteins (70%) were found to contain SUMOylation consensus sequences. From the remaining proteins a small number (12%) were found to contain possible SUMO interacting motifs. The proteins identified included DNA and RNA binding proteins, structural proteins and proteasomal proteins. Several of the proteins identified under oxidative stress conditions had previously been identified as SUMOylated proteins, thus validating the method presented.
Keywords
Oxidative stress; Proteomics; SIM; SUMOylation;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., Wen, L., Yao, X. and Xue, Y. (2009) Systematic study of protein sumoylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics. 9, 3409-3412.   DOI   ScienceOn
2 He, Y. and Smith, R. (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol. Life Sci. 66, 1239-1256.   DOI
3 Hay, R. T. (2005) SUMO: a history of modification. Mol. Cell 18, 1-12.   DOI   ScienceOn
4 Perry, J. J., Tainer, J. A. and Boddy, M. N. (2008) A SIMultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201-208.   DOI   ScienceOn
5 Hecker, C., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117-16127.   DOI   ScienceOn
6 Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355-382.   DOI   ScienceOn
7 Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H. and Shirakawa, M. (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966-35975.   DOI   ScienceOn
8 Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. and Jentsch, S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433.   DOI
9 Dorval, V. and Fraser, P. E. (2007) SUMO on the road to neurodegeneration. Biochim. Biophys. Acta. 1773, 694-706.   DOI   ScienceOn
10 Terashima, T., Kawai, H., Fujitani, M., Maeda, K. and Yasuda, H. (2002) SUMO-1 colocalized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport. 13, 2359- 2364.   DOI   ScienceOn
11 Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252-6258.   DOI   ScienceOn
12 Jakobs, A., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic. Acids. Res. 35, e109.   DOI   ScienceOn
13 Song, J., Zhang, Z., Hu, W. and Chen, Y. (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122-40129.   DOI   ScienceOn
14 Jakobs, A., Koehnke, J., Himstedt, F., Funk, M., Korn, B., Gaestel, M. and Niedenthal, R. (2007) Ubc9 fusion- directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat. Methods. 4, 245-250.   DOI   ScienceOn
15 Gutierrez, G. J. and Ronai, Z. (2006) Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem. Sci. 31, 324-332.   DOI   ScienceOn
16 Pollice, A., Vivo, M. and La Mantia, G. (2008) The promiscuity of ARF interactions with the proteasome. FEBS Lett. 582, 3257-3262.   DOI   ScienceOn
17 Bossis, G. and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349-357.   DOI   ScienceOn
18 Paulsen, C. E. and Carroll, K. S. (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS. Chem. Biol. 5, 47-62.   DOI   ScienceOn
19 Grant, M. M., Barber, V. S. and Griffiths, H. R. (2005) The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics. 5, 534-540.   DOI   ScienceOn
20 Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S. and Mische, S. M. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601-605.   DOI   ScienceOn
21 Creese, A. and Cooper, H. J. (2007) Liquid chromatography electron capture dissociation tandem mass spectrometry (LC-ECD-MS/MS) versus liquid chromatography collision-induced dissociation tandem mass spectrometry (LC-CID-MS/MS) for the identification of proteins. J. Am. Soc. Mass. Spectrom. 18, 891-897.   DOI   ScienceOn
22 Chow, S. and Ruskey, F. (2004) Drawing area-proportional Venn and Euler diagrams. Proc. of Graph. Drawing 2912, 466-477.   DOI   ScienceOn
23 Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. and Yates, J. R. 3rd. (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662-45668.   DOI   ScienceOn
24 Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H. and Wilson, V. G. (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics. 4, 56-72.   DOI
25 Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M. and Lamond, A. I. (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell Proteomics. 5, 2298-2310.   DOI   ScienceOn
26 Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A. and Hochstrasser, M. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102-4110.   DOI   ScienceOn
27 Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Séraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030-1032.   DOI   ScienceOn
28 Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R. and Becker, J. (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280, 275-286.   DOI   ScienceOn
29 Li, M., Guo, D., Isales, C. M., Eizirik, D. L., Atkinson, M., She, J. X. and Wang, C. Y. (2005) SUMO wrestling with type 1 diabetes. J. Mol. Med. 83, 504-513.   DOI