• Title/Summary/Keyword: STS304 steel

Search Result 185, Processing Time 0.03 seconds

Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과)

  • Kim, Jeong-Gyu;Kim, Cheol-Su;Jo, Dong-Hyeok;Kim, Do-Sik;Yun, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

Formation Behavior of Passive State Film on Stainless Steel for Metallic Ion Concentration in Electropolishing Solution (전해 연마액 금속 이온 농도에 따른 스테인리스 스틸의 부동태 피막 형성 거동)

  • Oh, Jong Su;Kang, Eun-Young;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.

A Study on the Grinding Characteristics of Stainless Steel with Optimum In-process Electrolytic Dressing (최적 연속 전해드레싱을 적용한 스테인레스 강의 연삭 특성에 관한 연구)

  • 이은상;김정두
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.29-37
    • /
    • 1998
  • In recent years, grinding techniques for precision machining of stainless steel used in shaft, screw parts and clear value have been improved by using the superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of stainless steel. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process dressing of superabrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of stainless steel (STS304)

  • PDF

Dissimilar Metal Welding of Nd:YAG Laser of Austenitic Stainless Steel and Medium Carbon Steel (중탄소강과 오스테나이트계 스테인레스강의 Nd:YAG 레이저의이종금속 용접)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1560-1565
    • /
    • 2005
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

  • PDF

Storage container-dependent chemical and microbiological characteristics during kimchi storage (저장용기에 따른 김치 저장 중의 화학적, 미생물학적 특성)

  • Kim, Seon-Gyu;Han, Min-Hui;Hwang, Jong-Hyun;Moon, Gi-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.304-309
    • /
    • 2020
  • Different types of storage containers, such as polypropylene (PP), stainless steel (STS), and ceramic were used for kimchi storage at 0℃ in a refrigerator, and the characteristics were compared for 32 days. The pH of kimchi samples in PP and STS containers reached 4.59 and 4.53, respectively at day 16, while a pH of 4.92 could be observed in ceramic containers. This trend persisted until day 32. Titratable acidities of the PP and STS container contents reached 0.83 and 0.82%, respectively, on day 16, while it reached 0.73% in the case of the ceramic container contents. The viable cell counts of lactic acid bacteria in kimchi samples in PP, STS, and ceramic containers fluctuated and finally reached 4.87, 5.44, and 5.35 Log CFU/g, respectively. Weissella koreensis occupied a large portion of the kimchi sample of the ceramic container on day 20 based on the metagenomic analysis. Taken together, ceramic container might be desirable for the storage of kimchi in low temperature refrigerators.

Study on Friction Welding of Heat Resisting Steel Materials of SUH3 and SUH35, and Its Real Time Evaluation by AE (내열강재 SUH3과 SUH35의 마찰용접 특성과 AE에 의한 실시간 평가)

  • 양형태;오세규;황성필;김일석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.12-19
    • /
    • 2000
  • In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also development of in-process real-time weld quality(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels of 12.3mm, 16mm, 20mm and 24mm in diameters) were performed, comparing with the other FRW matches of materials such as SUH3 to SUH31, SUH3 to STS303 and SUH3 to STS304. As an important result, the techniques for dissimilar friction welding optimization of engine heat resisting steels SUH3 and SUH35( 12.3mm, 16mm, 20mm, 24mm) and its real-time weld quality evaluation by AE were developed, considering on both diameter and carbon equivalent effects.

  • PDF

Magnetic Abrasive Polishing for Internal Face of STS Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen;Lee, Byung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than $40\%$ of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.