• Title/Summary/Keyword: STS304

Search Result 365, Processing Time 0.034 seconds

A Study on CFD Analysis to Investigate the Effects of Different Feed Rate into the High Temperature H2SO4 Transferring Pump at Fixed Frequency

  • Choi, Jung-Sik;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.304-311
    • /
    • 2014
  • In this study, to apply hydrogen energy to ship engine and to generate effective hydrogen production, we investigated the effects of high temperature $H_2SO_4$ feed rate and cooling water rate to pump parts with fixed frequency needed to reciprocate motion and a simulation was conducted at each condition. In the fixed frequency and cooling water inlet flow rate of 0.5 Hz and 3.9 kg/s, we changed the high temperature $H_2SO_4$ flow rate to 47.46 kg/s (it is 105 % of 45.2 kg/s), 49.72 kg/s (110 %), and 51.98 kg/s (115 %). Also, at 0.5 Hz and 45.2 kg/s of frequency and high temperature $H_2SO_4$ flow, the thermal hydraulic analysis was performed at the condition of 95 % (3.705 kg/s), 90 % (3.51 kg/s), and 85 % (3.315 kg/s). In overall simulation cases, the physical properties of materials are more influential to the temperature increase in the pump part rather than the changes on the feed rate of high temperature $H_2SO_4$ and cooling water. A continuous operation of pump was also capable even if the excess feed of high temperature $H_2SO_4$ of about 15 % or the less feed of cooling water of about 15 % were performed, respectively. When the increasing feed of high temperature $H_2SO_4$ of up to 5 %, 10 %, and 15 % were compared with base flow (45.2 kg/s), the deviation of time period rose to a certain temperature and ranged from 0 to 4.5 s in the same position (same material). In case of cooling water, the deviation of time period rose to a certain temperature and ranged from 0 to 5.9 s according to the decreasing feed changes of cooling water at 5 %, 10 %, and 15 % compared to a base flow (3.9 kg/s). Finally, the additional researches related to the two different materials (Teflon and STS for Pitch and End-plate), which are concerned about the effects of temperature changes to the parts contacting different materials, are needed, and we have a plan to conduct a follow-up study.

Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy (SSC13 주강품의 내부식특성에 미치는 고용화 열처리 영향)

  • Kim, Kuk-Jin;Lim, Su-Gun;Pak, S.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of $34^{\circ}C$ and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at $1120^{\circ}C$ and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at $34^{\circ}C$ nitric acid solution.

A Study on Wear and Corrosion Properties of Plasma Carburized Austenitic Stainless Steel (플라즈마 침탄된 오스테나이트계 스데인리스강의 마모 및 부식 특성에 관한 연구)

  • Shin, Dong-Myung;Lee, Chang-Youl;Lee. Kyung-Sub
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.776-783
    • /
    • 2002
  • Austenitic stainless steel (STS304) has been carburized using glow discharge plasma and its microstructure, wear resistance and corrosion property have been investigated. A repeat boost-diffuse carburizing was used as an effective plasma carburizing method. The effective case depth of the plasma carburized specimens was increased with the carbon concentration at the surface area. The specimens prepared by 3 hours plasma carburizing under $600^{\circ}C$ did not have the standard hardness for the effective case depth, but the specimen prepared by 11 hours plasma carburizing at $500^{\circ}C$ had nearly the same hardness with the specimen plasma carburized for 3 hours at $800^{\circ}C$. The wear resistance increased with temperature but the corrosion properties of the specimens prepared over $600^{\circ}C$ decreased rapidly due to the grain boundary sensitization. However, the specimen plasma carburized for 11 hours at $500^{\circ}C$ had nearly the same wear resistance with the specimen plasma carburized for 3 hours at $800^{\circ}C$ without deterioration of corrosion property. This could be resulted from the fact that the microstructure of the specimen plasma carburized for 11 hours at $500^{\circ}C$ was composed of martensite and austenite, because a partial martensite transformation was occurred only in the specimen plasma carburized for 11 hours at 50$0^{\circ}C$.

The Residual Stress of TiN Thin Film Deposited by PECVD (PECVD에 의해 증착된 TiN 박막의 잔류응력)

  • Song, K.D.;Nam, D.H.;Lee, I.W.;Lee, G.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.70-78
    • /
    • 1993
  • The presence of a residual stress in a thin film affects the properties and performances of the film, so the study of stress in a film must be very important. In this study, therefore, considering the characteristics of PECVD process, it was discussed that the residual stress, measured by $sin^2{\Psi}$ method, fo TiN films deposited on substrates with different TECs (thermal expansion coefficients) changed with film thickness. As a results, it was obtained that the residual stress of TiN film was compressive stress about all kinds of substrates and increased with film thickness. Also, the compressive residual stresses of TiN films increased in Si, Ti, STS304 order. According to the above results, we confirmed that the changes of residual stress of TiN film with substrates were due to the thermal stress originated form the difference in the TECs of the film and substrates, and that the intrinsic stress had dominating effect on the residual stress of TiN film deposited by PECVD. And in this study, the intrinsic stress of TiN film was compressive stress in spite of the Zone 1 structure. It is due to the entrapment of impurities in grain boundary or void.

  • PDF

Machining experimental and characteristic analysis of vaporized amplification sheets according to selection of high-power density electron beam drilling parameters (고출력 전자빔 드릴링 가공 파라미터 선정에 따른 증기화 증폭 시트의 가공 실험 및 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Wi, Eun-Chan;Lee, Joo-Hyung;Kang, Jun-Gu;Kim, Jin-Seok;Kang, Eun-Goo;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • Recently, research on precise parts required in aerospace, ship, and automobile industries has been actively conducted. In this paper, electron beam drilling machining parameters were selected and experiments were conducted to compare processing characteristics analysis according to machining parameters through machining experiments of a vaporization amplification sheet to which STS 304 was applied. Also, as a result of measuring the machining. As the thickness gradually increased, it was confirmed that the electron beam could not reach the vaporization amplification sheet and thus melted on the surface of the material. As a result of the experimental analysis, it was analyzed that the vaporization explosion reaction of the vaporization amplification sheet was not normally performed due to the working distance (WD) according to the material thickness.

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.

Nondestructive Evaluation of Defect Size by Using a Contrast Parameter of Infrared Image (적외선 열화상 이미지 컨트라스트 파라미터를 이용한 결함 크기의 비파괴 평가)

  • Choi, Jungyoung;Choi, Sooyoung;Kim, Jaeyeon;Yoo, Kitae;Park, Jaiwon;Hyun, Changyong;Byeon, Jaiwon
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.87-94
    • /
    • 2018
  • Purpose: In this study, the defect quantification of thin metal plate was evaluated by using lock-in infrared thermography. Methods: A STS304 standard specimens, which had the artificial-defects of different size, were used. The focal distance between the infrared camera and the specimen was set to 500mm, and the distance between the lump and the specimen was set to 200mm. One halogen lamp with a maximum capacity of 1kW was used, and phase-lock infrared thermal images with a frequency of 1Hz were captured and analyzed. Result: Objectively quantified data values were obtained by analyzing the contrast ratio and signal-to-noise ratio. Conclusion: The possibility of defect diagnosis for thin metal plate was confirmed by using the lock-in infrared thermography technique.

Development the Technique for Fabrication of the Thermal Fatigue Crack to Enhance the Reliability of Structural Component in NPPs (원자력 구조재 신뢰성 향상을 위한 열피로 균열 시험편 제작 기법 개발)

  • Kim, Yong;Kim, Jae-Sung;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.43-49
    • /
    • 2008
  • Fatigue cracks due to thermal stratification or corrosion in pipelines of nuclear power plants can cause serious problems on reactor cooling system. Therefore, the development of an integrated technology including fabrication of standard specimens and their practical usage is needed to enhance the reliability of nondestructive testing. The test material was austenitic STS 304, which is used as pipelines in the Reactor Coolant System of a nuclear power plants. The best condition for fabrication of thermal fatigue cracks at the notch plate was selected using the thermal stress analysis of ANSYS. The specimen was installed from the tensile tester and underwent continuos tension loads of 51,000N. Then, after the specimen was heated to $450^{\circ}C$ for 1 minute using HF induction heater, it was cooled to $20^{\circ}C$ in 1 minute using a mixture of dry ice and water. The initial crack was generated at 17,000 cycles, 560 hours later (1cycle/2min.) and the depth of the thermal fatigue crack reached about 40% of the thickness of the specimen at 22,000 cycles. As a results of optical microscope and SEM analysis, it is confirmed that fabricated thermal fatigue cracks have the same characteristics as real fatigue cracks in nuclear power plants. The crack shape and size were identified.

A Study on Fretting-Wear Behavior of Inconel 690 due to Surrounding Temperature (주위 온도에 따른 Inconel690의 마멸 거동에 관한 연구)

  • 임민규;박동신;김대정;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-303
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air and water environment. Fretting tests were done under various vibrating amplitudes, applied normal loads and various temperatures. From the results of sliding and fretting wear tests, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. At room temperature, the wear coefficient K of Inconel 690 is 7.57${\times}$10$\^$13/Pa$\^$1/ in air and it is 1.93${\times}$10$\^$13/Pa$\^$1/ in water. At room temperature, it is found that the wear volume in air is more than in water. In water, the wear coefficient K at 50$^{\circ}C$ and 80$^{\circ}C$ is 4.35${\times}$10$\^$-13/Pa$^1$ and 5.81${\times}$10$\^$-13/Pa$^1$ respectively, Therefore, it is found that the wear volume extremely increases by increasing on temperature in water. This study shows that the dissolved oxygen with temperature increment increases and the wear due to fluidity is severe.

  • PDF

Changes in Mechanical Properties of WC-Co by Ultrasonic Nanocrystal Surface Modification Technique (UNSM 기술을 이용한 초경의 기계적 특성변화)

  • Lee, Seung-Chul;Kim, Jun-Hyong;Kim, Hak-Doo;Choi, Gab-Su;Amanov, Auezhan;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.157-162
    • /
    • 2015
  • In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique is applied to tungsten carbide-cobalt (WC-Co) to extend the service life of carbide parts used in press mold. The UNSM technique modifies the structure, reduces the surface roughness, increases the surface hardness, induces the compressive residual stress, and increases the wear resistance of materials by introducing severe plastic deformation. The surface roughness, hardness, and compressive residual stress of WC after UNSM treatment improve by about 42, 10, and 71%, respectively. A wear test under dry conditions is used to assess the effectiveness of the UNSM technique on the friction and wear behavior of WC. The UNSM technique is found to reduce the WC friction coefficient by approximately 21% and enhance the wear resistance by approximately 85%. The improved friction and wear behavior of WC may be mainly attributed to the increased hardness and compressive residual stress. Moreover, the WC specimen is treated by UNSM technique using three different WC, silicon nitride (Si3N4) and stainless steel (STS304) balls. The surface treated by WC balls shows the highest hardness when compared with treatment by stainless steel and silicon nitride balls. According to the obtained results, the UNSM technique is believed to increase the durability of the carbide component by improving the friction and wear behavior.