• Title/Summary/Keyword: STORM

Search Result 1,693, Processing Time 0.033 seconds

Multi-level Scheduling Algorithm Based on Storm

  • Wang, Jie;Hang, Siguang;Liu, Jiwei;Chen, Weihao;Hou, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1091-1110
    • /
    • 2016
  • Hybrid deployment under current cloud data centers is a combination of online and offline services, which improves the utilization of the cluster resources. However, the performance of the cluster is often affected by the online services in the hybrid deployment environment. To improve the response time of online service (e.g. search engine), an effective scheduling algorithm based on Storm is proposed. At the component level, the algorithm dispatches the component with more influence to the optimal performance node. Inside the component, a reasonable resource allocation strategy is used. By searching the compressed index first and then filtering the complete index, the execution speed of the component is improved with similar accuracy. Experiments show that our algorithm can guarantee search accuracy of 95.94%, while increasing the response speed by 68.03%.

Study on Development of Surge-Tide-Wave Coupling Numerical Model for Storm Surge Prediction (해일-조석-파랑을 결합한 폭풍해일 수치모델 개발에 관한 연구)

  • Park, Jong-Kil;Kim, Myung-Kyu;Kim, Dong-Cheol;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • IIn this study, a wave-surge-tide coupling numerical model was developed to consider nonlinear interaction. Then, this model was applied and calculations were made for a storm surge on the southeast coast. The southeast coast was damaged by typhoon "Maemi" in 2003. In this study, we used a nearshore wind wave model called SWAN (Simulating WAves Nearshore). In addition, the Meyer model was used for the typhoon model, along with an ocean circulation model called POM (Princeton Ocean Model). The wave-surge-tide coupling numerical model could calculate exact parameters when each model was changed to consider the nonlinear interaction.

Storm-based Dynamic Tag Cloud of Real-time SNS Data (Storm 기반 실시간 SNS 데이터의 동적 태그 클라우드)

  • Son, Siwoon;Kim, Dasol;Lee, Sujeong;Gil, Myeong-Seon;Moon, Yang-Sae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.47-49
    • /
    • 2016
  • 최근 SNS(social networking service)의 사용이 급증함에 따라 SNS에서 발생하는 데이터의 분석이 활발해졌다. 하지만 SNS 데이터는 빠르게 생성되며 정형화 되어 있지 않은 빅데이터이기 때문에 그대로 수집할 경우 분석하기가 어렵다. 본 논문은 분산 스트리밍 처리 기술인 Storm을 사용하여 트위터에서 실시간으로 발생하는 데이터를 수집 및 집계하고, 태그 클라우드를 사용하여 집계 결과를 동적으로 시각화하고자 한다. 또한 사용자가 쉽게 키워드를 입력하고 시각화 결과를 실시간으로 확인할 수 있도록 웹 인터페이스를 구현한다. 그리고 결과를 통해 태그 클라우드의 결과가 시간에 따라 바르게 시각화되었는지 확인한다. 본 논문은 빠르게 발생하는 SNS 데이터로부터 각 키워드와 관련된 정보를 시각화하여 각 사용자에게 제공할 수 있는 우수한 결과가 사료된다.

APPLICATION OF GRID-BASED KINEMATIC WAVE STORM RUNOFF MODEL(KIMSTORM)

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Sok
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.321-330
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Heavy Rainfall prediction using convective instability index (대류성 불안정 지수를 이용한 집중호우 예측)

  • Kim, Young-Chul;Ham, Sook-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The purpose of this study is possibility of the heavy rainfall prediction using instability index. The convective instability index using this study is Convective Available Potential Energy(CAPE) concerned the growth energy of the storm, Bulk Richardson Number(BRN) concerned the type and strength of the storm, and Sotrm Relative Helicity(SRH) concerned maintenance of the storm. To verify the instability index, the simulation of heavy rainfall case experiment by Numerical Weather Prediction(NWP) model(MM5) are designed. The results of this study summarized that the heavy rainfall related to the high instability index and the proper combination of one more instability index made the higher heavy rainfall prediction.

  • PDF

A Study on the Extraction of Flood Inundated Scar of Rural Small Stream Using RADARSAT SAR Images (RADARSAT SAR 영상을 이용한 농촌 소하천주변의 침수피해지역 추정연구)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.300-305
    • /
    • 2005
  • To trace the flood inundation area around rural small stream, RADARSAT image was applied because it has the ability of acquiring data during storm period irrespective of rain and cloud. For the storm of 9 August, 1998 in Anseong-cheon watershed, three temporal RADARSAT images before, just after and after the storm were used. After ortho-rectification using 5 m DEM, two methods of RGB composition and ratio were tried and found the inundated area in the tributary stream, Seonghwan-cheon and Hakseong-cheon. The inundated area had occurred at the joint area of two streams, thus the floodwater overflowed bounding discharge capacity of the stream. The progression of damage areas were stopped by the local road and farm road along the paddy.

  • PDF

Estimation of Probable Maximum Depth-Area-Duration by Moisture Maximization over the Geumgang River Basin (금강유역에 내린 호우의 수분최대화에 의한 가능 최대 DAD의 산정)

  • Lee, Kwang-Ho
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.55-65
    • /
    • 2006
  • The characteristics of Depth-Area-Duration (DAD) for 50 storms over the Geumgang river basin have been analysed in terms of various storm causes using the precipitation data during the period from 1984 to 2003. Results show that the ratio of the precipitation depth to duration, and the ratio of decrease in the precipitation depth to area are the largest in the case of the tropical cyclone. Storm maximization ratios are in the range 1.03 to 2.66 for the 50 selected heavy precipitation cases over Geumgang river basin, with the largest value for the tropical cyclone case, suggesting that the tropical cyclone could cause heavier precipitation than the other storms. In addition, the 24-hour probable maximum precipitation for the Geumgang river basin is estimated to be about 745 mm in the maximum precipitation area.

A CASE STUDY TO DETERMINE THE RELATIONSHIP OF RELATIVISTIC ELECTRON EVENTS TO SUBSTORM INJECTIONS AND ULF POWERS

  • Hwang Junga;Min Kyoung Wook;Lee Ensang;Lee China;Lee Dae Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.380-383
    • /
    • 2004
  • We study the two storm events of 1997: one in May that was accompanied by a relativistic electron event (REE) and the other in September, with a more profound Dst decrease, but with no significant flux increase of relativistic electrons. We find that a larger amount of seed electrons was present in the May event compared to that of the September storm, whereas the ULF (ultra low frequency) power was more enhanced and the particle spectrum was harder in the September event. Hence, we demonstrate that a larger storm does not necessarily produce more seed electrons and that the amount of seed electrons is an important factor in an actual increase in REE flux levels, while ULF can harden the particle spectra without causing an apparent REE.

  • PDF

Runoff Analysis and Application of Runoff Model of Urban Storm Drainage Network (도시하수도망에 대한 유출모형의 남용과 유출해석)

  • 박성천;이관수
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • This research is to show the application of runoff model and runoff analysis of urban storm drainage network. the runoff models that were used for this research were RRL, ILLUDAS, and SWMM applicative object basin were Geucknak-chun and Sangmu drainage basin located in Seo-Gu, Kwangju. The runoff analysis employed the design storm that distributed the rainfall intensity according to the return period after the huff's method. The result from the comparative analysis of the three runoff models was as follows The difference of peak runoff by return period was 20-30% at Sangmu drainage area of $3.17 Km^2$, while less than 10% at Geucknak-chun drainage area of $12.7 Km^2$. The peak runoff were similar to all models. At the runoff hydrograph the times between rising and descending points were in the sequence of RRL, ILLUDAS and SWMM, but the peak times were similar to all models. The conveyance coefficient to examine the conveyance of the existing drainage network was 0.94-1.37, which means insecure, in Geucknak-chun drainage basin and 0.69-1.16, which means secure, in sangmu drainage basin.

  • PDF

BASELINE MEASUREMENTS ON THE PERFORMANCE OF FOUR CONSTRUCTED WETLANDS IN TROPICAL AUSTRALIA

  • Fell, A.;Jegatheesan, V.;Sadler, A.;Lee, S.H.
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.316-327
    • /
    • 2005
  • Constructed wetlands provide several benefits that are not solely limited to storm water management and are becoming common in storm water management. In this research, four recently constructed wetlands underwent in situ and laboratory water sampling to determine their efficiency in removing storm water pollutants over a 5-month period. From the sampling results, it was determined that each of the wetlands was able to reduce the concentration of pollutants in the stormwater. To aid in the assessment of the wetlands against each other, a model was developed to determine the extent of removal of stormwater pollutants over the length of the wetland. The results from this model complimented the data collected from the field. Improvements, such as increased amounts of vegetation were recommended for the wetlands with the aim of increasing the effectiveness. Further investigations into the wetlands will allow for better understanding of the wetland's performance.