• Title/Summary/Keyword: STK

Search Result 72, Processing Time 0.02 seconds

Real time orbit estimation using asynchronous multiple RADAR data fusion (비동기 다중 레이더 융합을 통한 실시간 궤도 추정 알고리즘)

  • Song, Ha-Ryong;Moon, Byoung-Jin;Cho, Dong-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.66-72
    • /
    • 2014
  • This paper introduces an asynchronous multiple radar fusion algorithm for space object tracking. To estimate orbital motion of space object, a multiple radar scenario which jointly measures single object with different sampling time indices is described. STK/ODTK is utilized to determine realization of orbital motion and joint coverage of multiple radars. Then, asynchronous fusion algorithm is adapted to enhance the estimation performance of orbital motion during which multiple radars measure the same time instances. Monte-Carlo simulation results demonstrate that the proposed asynchronous multi-sensor fusion scheme better than single linearized Kalman filter in an aspect of root mean square error.

Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

  • Choi, Ha-Yeon;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.367-377
    • /
    • 2015
  • Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO) orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK$^{(R)}$) Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK$^{(R)}$ Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

Lunar Exploration Satellite Communication Link Analysis (달 탐사 위성의 통신 링크 분석)

  • Kim, Ah-Leum;Lee, Seul-Ki;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • In recent space industry, It has become a major trend to launch lunar exploration satellites to extend activities in the deep space environment. In this paper, a link budget analysis is carried out for the lunar exploration satellite. One of the major difference between the lunar satellite and LEO spacecraft lies in the orbit parameters. The vast distance between spacecraft and the Earth station imposes a challenging task for the spacecraft designers in terms of achieving stable communication link budget. The satellite tool kit software has been adopted to simulate the lunar exploring satellite. The relative distance between the spacecraft and the ground stations are tracked and the communication link budget is calculated accordingly.

Evaluating High-Degree-and-Order Gravitational Harmonics and its Application to the State Predictions of a Lunar Orbiting Satellite

  • Song, Young-Joo;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.

Orbital Lifetime Analysis of Space Objects (우주물체 궤도수명 분석)

  • Seong, Jae-Dong;Kim, Hae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.184-192
    • /
    • 2014
  • In this paper, the lifetime of the artificial space objects in the LEO is analysed by using TLE data, which is provided by JSpOC. We observed the change of the number of space objects from 1957 and determined the reason of space debris generation. And then, we performed the analysis about present condition of space debris environment. The lifetime analysis includes a total of 11,792 artificial space objects and performed until the year 2050 by orbit propagation. We analyze the annual reentry frequency for the high RCS objects such as nonoperational satellites and rocket bodies, which have the possibility of earth ground impact through STK/Lifetime Tool for accurate and effective calculation. The results show that 9 payloads or rocket bodies will be decayed annually and 2 or 3 objects of total value have the possibility of ground impact. In addition, it is also shown that the 40% of a total analysed objects have the lifetime over 200 years.

Optimization of Medium Composition for the Mycelial Growth of Sparassis crispa (꽃송이버섯의 균사 생장을 위한 배지 조건 최적화)

  • Kim, Jin-Woo;Cheon, Woo-Jae;Chai, Kyung-Hee;Kim, Dong-Gwan;Son, Sung-Ho;Kim, Jong-Guk;Lim, Hee-Jae
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.200-208
    • /
    • 2012
  • The characteristics of mycelium growth of Sparassis crispa KGFS08 and KFRI746 in liquid culture were investigated. The optimum growth of the mycelium of S. crispa was observed in the KTM medium. The best carbon source was starch. In terms of nitrogen sources, tryptone affected mycelial growth in the liquid culture. The optimal culture conditions were pH 4.0-5.0 in STK medium [3% (w/v) starch, 0.3% (w/v) tryptone, 0.1% (w/v) $KH_2PO_4$, and 0.1% (w/v) folic acid].

Development of Mission Analysis and Design Tool for ISR UAV Mission Planning (UAV 감시정보정찰 임무분석 및 설계 도구 개발)

  • Kim, Hongrae;Jeon, Byung-Il;Lee, Narae;Choi, Seong-Dong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.181-190
    • /
    • 2014
  • The optimized flight path planning which is appropriate for UAV operation with high performance and multiplex sensors is required for efficient ISR missions. Furthermore, a mission visualization tool is necessary for the assessment of MoE(Measures of Effectiveness) prior to mission operation and the urgent tactical decision in peace time and wartime. A mission visualization and analysis tool was developed by combining STK and MATLAB, whose tool was used for UAV ISR mission analyses in this study. In this mission analysis tool, obstacle avoidance and FoM(Figure of Merit) analysis algorithms were applied to enable the optimized mission planning.

LIQUID APOGEE ENGINE BURN PLANS FOR THE KOREASAT-3 (액체추진제를 사용한 무궁화위성 3호의 정지궤도 진입 시뮬레이션)

  • 윤재철;최규홍;김두환;김방엽;김은규
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.427-436
    • /
    • 1998
  • The apogee manoeuvre of $KOREASAT-1{cdot}2{cdot}3$ is basic elliptical orbit transfer converting orbit plane. The KOREASAT-3 is planed for multi-burn manoeuvres using the liquid apogee engine while the $KOREASAT-1{cdot}2$ used the apogee kick motor that executes a single burn in the apogee of transfer orbit using the solid propellant. This study analyzed the multi-burn manoeuvres using the liquid apogee engine and the propellant control method and developed the simulation tools. For the purpose of precise simulation, We designed tools in the basic of orbit propagation software, COWELL5, that was developed by members of Center for Astrodynamics in Yonsei university and the results can be displayed in 3-D graphic of $STK/VO^{TM}$.

  • PDF

On-orbit Analysis of Power Generation Efficiency of Concentrating Photovoltaic System Using Commercial Fresnel Lens for Pico Satellite Applications (상용 프레넬렌즈를 이용한 극초소형 위성용 집광형 태양전력 시스템의 궤도 전력생성효율 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.318-325
    • /
    • 2015
  • Pico satellite has limited surface to install the solar cells due to its extremely limited size. Also, the sun incidence angle with respect to the solar panel continuously varies according to the attitude control strategy and its important parameter for the power generation. In this study, a concentrating photovoltaic system for pico satellite application has been proposed that can enhance the power generation efficiency in case of the unfavorable condition of the sun incidence angle with respect to the solar panel of the satellite using the fresnel lens. To prove the possibility of maximizing the power generation efficiency of the proposed concentrating power system, we have performed the power measurement test using a solar simulator and commercial fresnel lens. And on-orbit analysis of the power generation efficiency using the STK which is a commercial S/W has also been performed based on the test results.

An Analysis of three-dimensional collision probability according to approaching objects to the KOMPSAT series (아리랑 위성들의 경향에 따른 및 3차원 충돌확률 분석)

  • Seong, Jae-Dong;Kim, Hae-Dong;Lim, Seong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.156-163
    • /
    • 2013
  • Collision probability is the most common method to measure the risk of space debris, it is widely used that two dimensional linear collision probability using the closest approach distance. This paper represents the characteristics of object that approach KOMPSAT 2, 3, 5 that have operated or will be operated by Korea. And more precise method than two dimensional linear collision probability, we analyzed the properties of three dimensional nonlinear collision probability using STK/Nonlinear Collision Probability Tool. Through this, efficiency of three dimensional nonlinear collision probability for KOMPSAT series satellites was investigated. The result represents that three dimensional nonlinear collision probability showed the precise outcome at a relative velocity of less than 350m/s. Also, KOMPSAT series satellites appeared to few low relative velocity approaches and showed low efficiency for the three dimensional nonlinear collision probability.