• 제목/요약/키워드: STEM school

검색결과 1,195건 처리시간 0.03초

Effect of Extrinsic Factors on Differentiated Cardiomyocyte-like Cells from Human Embryonic Stem Cells

  • Gil, Chang-Hyun;Jang, Jae-Woo;Lee, Won-Young;Park, Ze-Won;Lee, Jae-Ho;Chung, Sun-Hwa;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.263-271
    • /
    • 2009
  • Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst-stage embryos spontaneously have ability to differentiate via embryo-like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte-like cells differentiation from hESCs by treatment of induced-factors, 5-azacytidine, BMP-4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte-like cells showed that cardiac markers are expressed for further analysis by RT-PCR and immunocytochemistry. Interestingly, BMP-4 greatly improved homogeneous population of the cardiomyocyte-like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

Stem cell therapy in pain medicine

  • Han, Yong Hee;Kim, Kyung Hoon;Abdi, Salahadin;Kim, Tae Kyun
    • The Korean Journal of Pain
    • /
    • 제32권4호
    • /
    • pp.245-255
    • /
    • 2019
  • Stem cells are attracting attention as a key element in future medicine, satisfying the desire to live a healthier life with the possibility that they can regenerate tissue damaged or degenerated by disease or aging. Stem cells are defined as undifferentiated cells that have the ability to replicate and differentiate themselves into various tissues cells. Stem cells, commonly encountered in clinical or preclinical stages, are largely classified into embryonic, adult, and induced pluripotent stem cells. Recently, stem cell transplantation has been frequently applied to the treatment of pain as an alternative or promising approach for the treatment of severe osteoarthritis, neuropathic pain, and intractable musculoskeletal pain which do not respond to conventional medicine. The main idea of applying stem cells to neuropathic pain is based on the ability of stem cells to release neurotrophic factors, along with providing a cellular source for replacing the injured neural cells, making them ideal candidates for modulating and possibly reversing intractable neuropathic pain. Even though various differentiation capacities of stem cells are reported, there is not enough knowledge and technique to control the differentiation into desired tissues in vivo. Even though the use of stem cells is still in the very early stages of clinical use and raises complicated ethical problems, the future of stem cells therapies is very bright with the help of accumulating evidence and technology.

유방암 줄기세포 개념 및 제한점 (Concept and limitation of breast cancer stem cells)

  • 김종빈;안정신;임우성;문병인
    • Journal of Medicine and Life Science
    • /
    • 제15권2호
    • /
    • pp.46-50
    • /
    • 2018
  • Cancer, a leading mortality disease following cardiovascular disease worldwide, has high incidence as one out of every four adults in Korea. It was known to be caused by several reasons including somatic mutation, activation of oncogene and chromosome aneuploidy. Cancer cells show a faster growth rate and have metastatic and heterogeneous cell populations compared to normal cells. Cancer stem cells, the most invested field in cancer biology, is a theory to explain heterogeneous cell populations of cancer cells among several characteristics of cancer cells, which is providing the theoretical background for incidence of cancer and treatment failure by drug resistance. Cancer stem cells initially explain heterogeneous cell populations of cancer cells based on the same markers of normal stem cells in cancer, in which only cancer stem cells showed heterogeneity of cancer cells and tumor initiating ability of leukemia. Based on these results, cancer stem cells were reported in various solid cancers such as breast cancer, liver cancer, and lung cancer. Breast cancer stem cells were first reported in solid cancer which had tumor initiating ability and further identified as anti-cancer drug resistance. There were several identification methods in breast cancer stem cells such as specific surface markers and culture methods. The discovery of cancer stem cells not only explains heterogeneity of cancer cells, but it also provides theoretical background for targeting cancer stem cells to complete elimination of cancer cells. Many institutes have been developing new anticancer drugs targeting cancer stem cells, but there have not been noticeable results yet. Many researchers also reported a necessity for improvement of current concepts and methods of research on cancer stem cells. Herein, we discuss the limitations and the perspectives of breast cancer stem cells based on the current concept and history.

First Report of Botryosphaeria parva Causing Stem Blight on Rubus crataegifolius in Korea

  • Park, Sangkyu;Kim, Seung-Han;Back, Chang-Gi;Lee, Seung-Yeol;Kang, In-Kyu;Jung, Hee-Young
    • 식물병연구
    • /
    • 제22권2호
    • /
    • pp.116-121
    • /
    • 2016
  • In 2015, stem blight of Rubus crataegifolius was observed in Pohang, Korea. The symptoms began as dark red spots in the stem, which led to stem blight, then leaf blight, and eventually resulted in death. A fungal isolate was obtained from a symptomatic stem and incubated on a potato dextrose agar plate. The isolated fungus produced white, cloudy mycelia turned black in 3 days. Based on the morphological characteristics, the causal fungus was assumed to be Botryosphaeria sp. A pathogenicity test was conducted according to Koch's postulates. To identify the causal agent, the combined sequence of the internal transcribed spacer, ${\beta}$-tubulin, and translation elongation factor $1{\alpha}$ genes were used for phylogenetic analysis. Approximately 1,200 bp of the combined sequence clearly suggested that the isolated pathogen was Botryosphaeria parva. This is the first report on stem blight in R. crataegifolius caused by B. parva in Korea.

Occurrence of Bacterial Stem Rot of Ranunculus asiaticus Caused by Pseudomonas marginalis in Korea

  • Li, Weilan;Ten, Leonid N.;Kim, Seung-Han;Lee, Seung-Yeol;Jung, Hee-Young
    • 식물병연구
    • /
    • 제24권2호
    • /
    • pp.138-144
    • /
    • 2018
  • In December 2016, stem rot symptoms were observed on Persian buttercup (Ranunculus asiaticus) plants in Chilgok, Gyeongbuk, Korea. In the early stage of the disease, several black spots appeared on the stem of infected plants. As the disease progressed, the infected stem cleaved and wilted. The causal agent was isolated from a lesion and incubated on Reasoner's 2A (R2A) agar at $25^{\circ}C$. Total genomic DNA was extracted for phylogenetic analysis. Based on the 16S rRNA gene analysis, the isolated strain was found to belong to the genus Pseudomonas. To identify the isolated bacterial strain at the species level, the nucleotide sequences of the gyrase B (gyrB) and RNA polymerase D (rpoD) genes were obtained and compared with the sequences in the GenBank database. As the result, the causal agent of the stem rot disease was identified as Pseudomonas marginalis. To determine the pathogenicity of the isolated bacterial strain, it was inoculated into the stem of healthy R. asiaticus plant, the inoculated plant showed a lesion with the same characteristics as the naturally infected plant. Based on these results, this is the first report of bacterial stem rot on R. asiaticus caused by P. marginalis in Korea.

이너뷰티 제품 개발을 중심으로 국내산 대나무 줄기의 생물공학적 활용방안 (Application of Domestic Bamboo Stems Mainly for Inner Beauty Product Development: A Review)

  • 최문희;서영진;신현재
    • KSBB Journal
    • /
    • 제32권1호
    • /
    • pp.1-8
    • /
    • 2017
  • Bamboo is a plant belonging to the Gramineae family, and can be used as valuable bioresources for many industrial applications. Bamboo has some useful properties and having a lot of beneficial uses such as a bamboo ware, agriculture material, building construction material, pulpwood, etc. Bamboo stem has a large amount of active ingredients that those of bamboo leaves. The stem of bamboo can be processed into various biomaterials including cellulose and lignin, and sometimes uses as foods, cosmetics and medicines using stem extracts with polyphenol compounds. For cosmetic applications of bamboo stems, especially, the constituents of bamboo stem are suitable for inner beauty (cosmetic food) products showing antioxidant and UV-protecting activities. This review summaries the recent literature data and discusses the versatile uses of bamboo stem and its extracts mainly for cosmetic application.

miR-328-5p functions as a critical negative regulator in early endothelial inflammation and advanced atherosclerosis

  • Yangxia Zhang;Yingke Li;Zhisheng Han;Qingyang Huo;Longkai Ji;Xuejia Liu;Han Li;Xinxing Zhu;Zhipeng Hao
    • BMB Reports
    • /
    • 제57권8호
    • /
    • pp.375-380
    • /
    • 2024
  • Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis.

성견 치계줄기세포 및 골수줄기세포 특성에 관한 연구 (Investigation of postnatal stem cells from canine dental tissue and bone marrow)

  • 진민주;김영성;김수환;김경화;이철우;구기태;김태일;설양조;구영;류인철;정종평;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the stemness of cells from canine dental tissues and bone marrow. Methods: Canine periodontal ligament stem cells (PDLSC), alveolar bone stem cells (ABSC) and bone marrow stem cells(BMSC) were isolated and cultured. Cell differentiations (osteogenic, adipogenic and chondrogenic) and surface antigens (CD146, STRO-1, CD44, CD90, CD45, CD34) were evaluated in vitro. The cells were transplanted into the subcutaneous space of nude mice to assess capacity for ectopic bone formation at 8 weeks after implantation. Results: PDLSC, ABSC and BMSC differentiated into osteoblasts, adipocytes and chondrocytes under defined condition. The cells expressed the mesenchymal stem cell markers differently. When transplanted into athymic nude mice, these three kinds of cells with hydroxyapatite /${\beta}$- tricalcium phosphate (HA/TCP) carrier showed ectopic bone formation. Conclusions: This study demonstrated that canine dental stem cells have stemness like bone marrow stem cells. Transplantation of these cells might be used as a therapeutic approach for dental stem cell-mediated periodontal tissue regeneration.