• Title/Summary/Keyword: STAVAX

Search Result 13, Processing Time 0.031 seconds

Turning of Plastic Mold Steel(STAVAX) using Whisker Reinforced Ceramic (단침보강 세라믹 공구를 이용한 플라스틱 금형강(STAVAX)의 선삭가공)

  • Bae, Myung-Il;Lee, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • In this study, we turning plastic mold steel (STAVAX) against cutting speed, depth of cut, feed rate using whisker reinforced ceramic tool (WA1). To predict cutting force, analyze principal, radial, feed force with multi-regression analysis. Results are follows: From the analysis of variance, affected factor to cutting force feed rate, depth of cut, cutting speed in order and cutting speed was very small affect to cutting force. From multi-regression analysis, we extracted regression equation and the coefficient of determination$(R^2)$ was 0.9, 0.88, 0.856 at principal, radial and feed force. It means regression equation is significant. From the experimental verification, it was confirmed that principal, radial and feed force was predictable by regression equation.

A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel (STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구)

  • Dong-Won Lee;Hyeon-Hwa Lee;Jin Soo Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.

Predict of Surface Roughness Using Multi-regression Analysisin Turning of Plastic Mold Steel (플라스틱 금형강의 선삭 가공시 중회귀분석을 이용한 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.87-92
    • /
    • 2013
  • In this study, we carried out the turning of plastic mold steel(STAVAX) with whisker reinforced ceramic tool(WA1) and analyzed ANOVA(Analysis of Variance) test. Multi-regression analysis was performed to find influential factors to surface roughness and to derive regression equation. Results are follows: From ANOVA test and confidence interval analysis of surface roughness, We found that influential factors to surface roughness was feed rate, cutting speed and depth of cut in order. From multi-regression analysis, we derived regression equation of STAVAX. it's coefficient of determination($R^2$) was 0.945 and It means that regression equation is significant. From experimental verification, we confirmed that surface roughness was predictable by regression equation. Compared with former research, we confirmed that increase of feed rate is the main cause of the growing of surface roughness and cutting force.

High Speed Ball End Milling of Hardened Mold Steel (열처리 금형강의 볼엔드밀 고속가공)

  • 양진석;허영무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1418-1423
    • /
    • 2004
  • High speed machining experiment on the heat-treated mold steel(STAVAX and CALMAX of hardness HRc 53) is carried using TiAlN coated ball endmill. Tool life and wear characteristics under the various machining parameters and cooling methods are investigated. Effect of cooling method on life and wear of the tool was compared. For most cases, tool life was not determined by the amount of wear but by th chipping on the cutting edge. It is found that tool manufacturer's cutting parameters generally agrees with the results of this experiment.

  • PDF

A Study on the Machining Characteristic of DLC Coated Mold Material Using FIB (FIB를 이용한 DLC소재의 가공공정에 관한 연구)

  • Hong, W.P.;Choi, B.Y.;Kang, E.G.;Lee, S.W.;Choi, H.Z.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis and IC error correction, etc. Currently, FIB is not being applied to the fabrication of the micro and nano-structured mold, because of low productivity. And also sputtering rate has been required to fabricate 3D shape. In the paper, we studied the FIB-Sputtering rate according to mold materials. And surface roughness characteristics had been analysed for micro or nano mold fabrication. Si wafer, Glassy Carbon, STAVAX and DLC that have been normally considered as good micro or nano mold materials were used in the study.

A Study on the Precision Hole Machiningof Pre Hardened Mould Steel (프리하든 금형강의 정밀 홀 가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jae;Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • In this paper, precision processing is carried out for the pre hardened steel(HRC 54), which is one of injection mould materials. Processing characteristics are estimated according to the number of tool cutting blade and roundness is observed by the 3-Dimensional measuring machine. The surface roughness affected by the wire electric discharge machining are measured. Cutting component force of STAVOX is the highest in condition of 2F processing because load per a blade of cutting tool is high. Especially, the difference in Fz is over 20N by cutting load. The slower spindle rotation speed and tool feed rate are, the better cutting component force is. The roundness of hole processed in condition of 4F is good because feed rate is able to be fast. When rotation speed is increased, the surface roughness is decreased. The surface roughness acquired in condition of 2F processing is higher about 50% than 4F processing.