• Title/Summary/Keyword: STATic synchronous COMpensator

Search Result 134, Processing Time 0.024 seconds

Dead Time Compensation of Grid-connected Inverter Using Resonant Controller (공진 제어기를 이용한 계통 연계형 인버터의 데드타임 보상)

  • Han, Sang-Hyup;Park, Jong-Hyoung;Kim, Heung-Geun;Cha, Honn-Yong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.569-576
    • /
    • 2011
  • This paper proposes a new dead time compensation method for a PWM inverter. Recently, PWM inverters are extensively used for industry applications, such as ac motor drives, distributed grid-connected systems and a static synchronous compensator (STATCOM). Nonlinear characteristics of the switch and the inverter dead time cause a current distortion and deterioration of power quality. The dominant harmonics in the output current are the $5^{th}$ and $7^{th}$ harmonics in the stationary frame, and the $6^{th}$ harmonics in the synchronous rotating frame. In this paper, a resonant controller which compensates the $6^{th}$ harmonics in the synchronous rotating frame is proposed. This method does not require any off-line experimental measurements, additional hardware and complicated mathematical computations. Furthermore, the proposed method is easy to implement and does not cause any stability problem.

A Study on Damping Improvement of a Synchronous Generator with Static VAR Compensator using a Fuzzy-PI Controller (퍼지-PI 제어기를 이용하여 정지형 무효전력 보상기를 포함한 동기 발전기의 안정도 개선에 관한 연구)

  • 주석민;허동렬;김상효;정동일;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2001
  • This paper resents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the must fiexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be barred on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and allied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

  • PDF

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

New Topology for Valve Performance Test Equipment of MMC based STATCOM (MMC 기반 STATCOM 용 밸브의 성능시험 장치를 위한 새로운 토폴로지)

  • Bae, Jongwoo;Jung, Jae-Hun;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek;Lee, Jin-Hee;Kim, Young-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • This study proposes a new topology for the performance test of a valve consisting of a modular multilevel converter (MMC)-based static synchronous compensator (STATCOM). The conventional valve performance test equipment requires high-voltage AC source of several kV rating because the number of submodules to be tested in a valve should be at least six or eight. However, the power source of the proposed scheme is DC and not AC source. The DC power source voltage range of the proposed test circuit is from several volts to several tens of volts. Therefore, the size and cost for the performance test equipment can be reduced considerably compared with the conventional method. The proposed scheme satisfies the requirements of the IEC 62927 standard. Simulations are conducted for a valve of 50[MVA] MMC-based STATCOM. Experimental results with a scale-downed setup show the validity of the proposed performance test topology.

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

Novel control algorithm for smart PCS with harmonics and reactive power compensation (고조파와 무효전력 보상기능을 가지는 Smart PCS의 새로운 제어 알고리즘)

  • Seo, Hyo-Ryong;Jang, Seong-Jae;Park, Sang-Soo;Kim, Sang-Yong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1053_1054
    • /
    • 2009
  • A significant number of renewable energy systems have been connected to the grids as supplement power source. The renewable energy systems require control algorithm to maintain the power-supply reliability and quality. This paper proposes a novel control algorithm for smart Power Conditioning System (PCS) with harmonics and reactive power compensation. The smart PCS is used to feed Photovoltaic (PV) power to utility and compensate harmonics and reactive power at the same time. The experimentation is carried out on the proposed grid-connected PV generation system, and controlled by digital signal processor. The grid-connected PV generation system injects PV energy into the grid and performs as Active Filter (AF) and Static Synchronous Compensator (STATCOM) without additional devices. The experiment results show that the proposed control algorithm is effective for smart PCS with harmonics and reactive power compensation.

  • PDF

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

A Study of the Power Flow Control Using SSSC (SSSC를 이용한 전력조류제어에 관한 연구)

  • Na, Wan-Ki;Chung, Jai-Kil;Lee, In-Yong;Chung, In-Hark;Lee, Hong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.239-241
    • /
    • 2000
  • This paper describes a modeling of a FACTS(Flexible AC Transmission System) device, namely, SSSC(Static Synchronous Series Compensator) model. The SSSC, a solid-state voltage source inverter coupled with a transformer, is connected in series with a transmission line. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. The paper discusses the basic operating and performance characteristics of the SSSC, and power flow control in power system.

  • PDF

Compensation of voltage drop and improvement of power quality at AC railroad system with single-phase distributed STATCOM (단상 배전 STATCOM을 이용한 전기철도시스템의 전압강하 및 전력품질 향상)

  • Kim, Jun-Sang;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.192-193
    • /
    • 2006
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion may also occur to AC electrical railroad system. These problems affect not only power system stability. but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, and then, it is analyzed voltage drop and power quality for AC electrical railroad system both with single-Phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

  • PDF

Innovative Model-Based PID Control Design for Bus Voltage Regulation with STATCOM in Multi-Machine Power Systems (STATCOM을 사용한 다기 전력 계통의 버스 전압 조절을 위한 모델 기반 PID 제어기 설계)

  • Kim, Seok-Kyoon;Lee, Young Il;Song, Hwachang;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.299-305
    • /
    • 2013
  • The complexity and severe nonlinearity of multi-machine power systems make it difficult to design a control input for voltage regulation using modern control theory. This paper presents a model-based PID control scheme for the regulation of the bus voltage to a desired value. To this end, a fourth-order linear system is constructed using input and output data obtained using the TSAT (Transient Security Assessment Tool); the input is assumed to be applied to the grid through the STATCOM (STATic synchronous COMpensator) and the output from the grid is a bus voltage. On the basis of the model, it is identified as to which open-loop poles of the system make the response to a step input oscillatory. To reduce this oscillatory response effectively, a model-based PID control is designed in such a way that the oscillatory poles are no longer problematic in the closed loop. Simulation results show that the proposed PID control dampens the response effectively.