• Title/Summary/Keyword: STATCOM power system

Search Result 147, Processing Time 0.026 seconds

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.

Influence of High PV Penetration and STATCOM on Rotor Angle Stability of SMIB Transmission System

  • Selwa, FETISSI;Djamel, LABED;Imen, LABED
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.849-857
    • /
    • 2018
  • This paper aims is to study the effect of photovoltaic generation penetration and STATCOM on the transient stability of a single machine infinite bus (SMIB) system based on the rotor angle stability. The influence of STATCOM and PV penetration can be seen through damping oscillations, so that the generator remains stable with the rest of the system for various fault conditions. The simulation results obtained make it possible to efficient identify harmful and beneficial impact of increasing the PV penetration and the existence of STATCOM capability. The system model is created in MATLAB/ SIMULINK software.

Design of a Robust STATCOM Supplementary Controller to Suppress the SSR in the Series-compensated System (직렬 보상 선로에서의 SSR 억제를 위한 강인한 STATCOM 보조 제어기의 설계)

  • Seo, Jang-Cheol;Mun, Seung-Il;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.136-141
    • /
    • 2000
  • This paper presents the design of an H$\infty$ based robust Static Synchronous Compensator (STATCOM) supplementary controller to suppress the subsynchronous resonance (SSR) in the series-compensated system. The IEEE second benchmark, System-l model is employed for this study. In order to design the effective controller, the modal controllability and observability indices to the oscillation modes are considered. Comprehensive time domain simulations using a nonlinear system model that the proposed STATCOM supplementary controller can suppress the SSR efficiently in spite of the variations of power system operating conditions.

  • PDF

A Study on Location of STATCOM for Improvement of Total Transfer Capability and Analysis of Total Transfer Capability Considering Transient Stability (전체송전용량 향상을 위한 STATCOM 설비의 적용 위치 선정 및 과도안정도를 고려한 전체송전용량 분석)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • The power transfer capability has been recently highlighted as a key issue in many utilities with the power system more stressed and heavy loaded. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and many approaches for enhancement of the total transfer capability has been consistently performed. In this paper, a new transfer capability index to locate the STATCOM(Static Synchronous Compensator) effectively for enhancing the total transfer capability from a static voltage stability viewpoint is presented and it is applied to a small scale power system of IEEE 39-bus test system in order to show the effects of this index. In addition, the effect of transient stability as well as voltage stability to the total transfer capability when loads are increased is analyzed using this small scale power system.

A Study on the Application of STATCOM, SVC to Enhance the Voltage Stability (우리나라 계통의 전압불안정 문제를 개선하기 위한 STATCOM과 SVC의 적용 검토)

  • Lee Sang Ho;Lee Jeong Ho;Oh Tae Kyoo;Kim Tai Ok;Moon Bong Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.129-131
    • /
    • 2004
  • Recent catastrophic failures of power system in various countries highlight the importance of the voltage stability and reactive power operation. Under the emergency situations, dynamic reactive power sources such as STATCOM and SVC play important roles in supporting the system voltage. This paper investigate the stability problem in KEPCO system and suggest the installation of the dynamic reactive Power sources as a countermeasure.

  • PDF

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

A Study on System Stability Improvement of Power System with High Speed Electric Railway Using STATCOM (STATCOM을 이용한 고속전철 부하가 연계된 계통의 안정도 향상에 관한 연구)

  • 이준경;오재경;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.625-631
    • /
    • 2003
  • The purpose of this paper is to assess experimentally system stability of the 154 ㎸ transmission system due to the current of the forthcoming AC High-Speed Railway (HSR) era. It introduces a simple method to evaluate the system stability The proposed method also shows the relationship between stability and power losses, and the stability indices made by the numerical process proposed in this paper will be used to assess whether a system can be stabilized or not. This paper also presents the improvement of the stability via loss reduction using STATCOM. Reactive power compensation is often the most effective way to improve both power transfer capability and system stability. The suitable modeling of the electric railway system should be applicable to the PSS/E. In the case study the proposed method is tested on a practical system of the Korea Electric Power Corporation (KEPCO) which will be expected to accommodate the heavy HSR load. Furthermore, it prove that the compensation of voltage drop and its by-product, loss reduction is closely related to improvement of system stability.

The study on Improvement of Voltage Stability Using STATCOM (STATCOM을 이용한 전압안정성 향상방안)

  • Seo, Eun-Sung;Lee, Byung-Jun;Kwon, Se-Hyuk;Yoon, Jong-Soo;Jang, Byung-Hoon;Kim, Hong-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.198-200
    • /
    • 2004
  • The purpose of this paper is to explain improvement of voltage stability using STATCOM by active power margin and reactive power margin. STATCOM, the representative shunt compensator of the FACTS devices, is faster than machinery compensator in response speed and has the advantage of the small scale because it doesn't use reactor or large capacitor. In this paper, we investigated the compensatory effect of the STATCOM that applied to KEPCO system.

  • PDF

The Evaluation of Damping by STATCOM in Power System Transient State (전력계통 과도상태에서의 STATCOM에 의한 제동력 평가)

  • Park, Ji-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.99-100
    • /
    • 2008
  • 본 논문은 전력계통의 과도상태에서의 STATCOM에 의해 제공되는 제동력을 평가한다. 기존의 논문들은 FACTS장비가 시스템의 안정도에 영향을 주는 제동력을 주로 고유치해석을 통하여 평가하였지만 본 논문은 에너지함수를 이용하여 FACTS장비에 의한 추가적인 제동력을 평가한다. 동기발전기의 상세모델링을 사용한 에너지함수를 통하여 STATCOM의 제동력이 전력계통의 과도 안정도에 미치는 영향을 시뮬레이션한다. 1기무한대모선 시스템에 적용한 결과를 보인다.

  • PDF