• Title/Summary/Keyword: STAT2

Search Result 368, Processing Time 0.026 seconds

Bioinformatic Prediction of SNPs within miRNA Binding Sites of Inflammatory Genes Associated with Gastric Cancer

  • Song, Chuan-Qing;Zhang, Jun-Hui;Shi, Jia-Chen;Cao, Xiao-Qin;Song, Chun-Hua;Hassan, Adil;Wang, Peng;Dai, Li-Ping;Zhang, Jian-Ying;Wang, Kai-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.937-943
    • /
    • 2014
  • Polymorphisms in miRNA binding sites have been shown to affect miRNA binding to target genes, resulting in differential mRNA and protein expression and susceptibility to common diseases. Our purpose was to predict SNPs (single nucleotide polymorphisms) within miRNA binding sites of inflammatory genes in relation to gastric cancer. A complete list of SNPs in the 3'UTR regions of all inflammatory genes associated with gastric cancer was obtained from Pubmed. miRNA target prediction databases (MirSNP, Targetscan Human 6.2, PolymiRTS 3.0, miRNASNP 2.0, and Patrocles) were used to predict miRNA target sites. There were 99 SNPs with MAF>0.05 within the miRNA binding sites of 41 genes among 72 inflammation-related genes associated with gastric cancer. NF-${\kappa}B$ and JAK-STAT are the two most important signaling pathways. 47 SNPs of 25 genes with 95 miRNAs were predicted. CCL2 and IL1F5 were found to be the shared target genes of hsa-miRNA-624-3p. Bioinformatic methods could identify a set of SNPs within miRNA binding sites of inflammatory genes, and provide data and direction for subsequent functional verification research.

The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice

  • Lee, Yuan Yee;Irfan, Muhammad;Quah, Yixian;Saba, Evelyn;Kim, Sung-Dae;Park, Seung-Chun;Jeong, Myung-Gyun;Kwak, Yi-Seong;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.591-598
    • /
    • 2021
  • Background: Hematopoiesis is the production of blood cells from hematopoietic stem cells (HSCs) that reside in the bone marrow. Cyclophosphamide (CTX) is a chemotherapy drug that suppresses the immune system. Korean Red Ginseng (KRG) and Colla corii asini (CCA) have been traditionally used for boosting the immune system. Methods: HSCs in the bone marrow, and immune cell subtype in splenocytes, PBMCs, and thymocytes were investigated. Serum levels of hematopoietic-related markers were analyzed using ELISA. Protein expression in spleen tissue was analyzed using western blot analysis. Hematoxylin & eosin staining in the femurs of mice were also conducted. Results: The combination of KRG and CCA with a ratio of 3:2 increased HSCs, CD3 and CD8+ T cells in the circulation, and CD3 T cells in the spleen. A ratio of 2:3 (KRG:CCA) increased the thymic regulatory T cells and recovered the CD3 T cells in the spleen and circulation while recovering proteins in the JAK-STAT pathway in the spleen. Overall, blood cell population and differentiating factors vital for cell differentiation were also significantly recovered by all combinations especially in ratios of 3:2 and 2:3. Conclusion: A ratio of 3:2 (KRG:CCA) is the most ideal combination as it recovered the HSC population in the bone marrow of mice.

Efficacy of Hataedock Treatments for Maintenance and Formation of Lipid Barrier in Obese NC/Nga Mice with Dermatophagoides Farinae-Induced Atopic Dermatitis

  • Kim, Hee-Yeon;Ahn, Sang-Hyun;Yang, In-Jun;Cheon, Jin-Hong;Kim, Kibong
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.74-85
    • /
    • 2018
  • Objectives: HTD treatment is a traditional preventive therapy for neonatal inflammatory diseases such as AD. The aim of this study was to investigate the efficacy of HTD treatments for the maintenance and formation of lipid barrier in Dermatophagoides farina-induced obese NC/Nga mice. Methods: 20 mg/kg of CRGR extracts as HTD treatments were orally administered to NC/Nga mice. To induce obesity, high fat diet was served. Dermatophagoides farina extracts was applied on the 4th-6th and 8th-10th weeks to induce AD-like skin lesions in NC/Nga mice. Changes of skin conditions in mice were observed by histochemistry and immunohistochemistry. Results: The results showed that HTD treatments effectively maintained and formed the lipid barrier. In the experimental groups, restorations of Lass2 expression and distributions of filaggrin, involucrin, loricrin, ASM, and LXR means that HTD treatments maintained and generated the lipid barrier. In the dermal papillae, HTD treatments reduced PKC production accompanied by epidermis damage. Furthermore, levels of IL-4, and STAT6 was low. HTD treatment may be effective for preventing inflammation induced by Th2-skewed condition by suppressing the main pathway of Th2 differentiation. Conclusions: HTD treatment alleviated the inflammatory damage in the skin tissues of the NC/Nga mice by maintaining the lipid barrier and suppressing Th2 differentiation.

8-Methoxypsoralen Induces Apoptosis by Upregulating p53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells

  • Eun Kyoung, Choi;Hae Dong, Kim;Eun Jung, Park;Seuk Young, Song;Tien Thuy, Phan;Miyoung, Nam;Minjung, Kim;Dong-Uk, Kim;Kwang-Lae, Hoe
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.219-226
    • /
    • 2023
  • Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOP-induced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Mass Production of Poly(3-Hydroxybutyrate) by Fed-Batch Cultures of Ralstonia eutropha with Nitrogen and Phosphate Limitation

  • Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Beom-Soo;Chang, Yong-Keun;Chang, Ho-Nam;Shim, Hyun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.751-756
    • /
    • 1999
  • For mass production of poly(3-hydroxybutyrate) (PHB), high cell density cultures of Ralstonia eutropha were carried out in 2.5-1 and 60-1 fermentors by two fed-batch culture techniques of nitrogen and phosphate limitation. When the nitrogen limitation technique was employed using both an on-line glucose monitoring and control system, a high concentration level of PHB (121g/l) was obtained in the small-scale fermentor of 2.5 1. However, the PHB concentration obtained in a large-scale fermentor of 60 1 only turned out to be 60g/l. In contrast, when another fed-batch culture technique of the phosphate-limitation employing dissolved oxygen (DO) stat glucose feeding was used, a large amount of PHB was successfully produced in both 60-1 and 2.5-1 fermentors. In a 2.5-1 fermentor, concentrations of PHB and cells obtained in 58 h were 175 and 210 g/l, respectively, which corresponded to the PHB productivity level of 3.02 g/l/h. In a 60-1 fermentor, a final cell concentration of 221 g/l and a PHB concentration of 180 g/l with PHB productivity level of 3.75 g/l/h were obtained in 48h. PHB content and yield from glucose were 81% and 0.38g PHB/g glucose, respectively. These data suggest that the phosphate limitation technique is more effective compared to nitrogen limitation in the mass production of PHB by R. eutropha of a large scale.

  • PDF

Removing Lipemia in Serum/Plasma Samples: A Multicenter Study

  • Castro-Castro, Maria-Jose;Candas-Estebanez, Beatriz;Esteban-Salan, Margarita;Calmarza, Pilar;Arrobas-Velilla, Teresa;Romero-Roman, Carlos;Pocovi-Mieras, Miguel;Aguilar-Doreste, Jose-Angel;Commission on Lipoprotein and Vascular Diseases, Sociedad Espanola de Quimica Clinica
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.518-523
    • /
    • 2018
  • Background: Lipemia, a significant source of analytical errors in clinical laboratory settings, should be removed prior to measuring biochemical parameters. We investigated whether lipemia in serum/plasma samples can be removed using a method that is easier and more practicable than ultracentrifugation, the current reference method. Methods: Seven hospital laboratories in Spain participated in this study. We first compared the effectiveness of ultracentrifugation ($108,200{\times}g$) and high-speed centrifugation ($10,000{\times}g$ for 15 minutes) in removing lipemia. Second, we compared high-speed centrifugation with two liquid-liquid extraction methods-LipoClear (StatSpin, Norwood, USA), and 1,1,2-trichlorotrifluoroethane (Merck, Darmstadt, Germany). We assessed 14 biochemical parameters: serum/plasma concentrations of sodium ion, potassium ion, chloride ion, glucose, total protein, albumin, creatinine, urea, alkaline phosphatase, gamma-glutamyl transferase, alanine aminotransferase, aspartate-aminotransferase, calcium, and bilirubin. We analyzed whether the differences between lipemia removal methods exceeded the limit for clinically significant interference (LCSI). Results: When ultracentrifugation and high-speed centrifugation were compared, no parameter had a difference that exceeded the LCSI. When high-speed centrifugation was compared with the two liquid-liquid extraction methods, we found differences exceeding the LCSI in protein, calcium, and aspartate aminotransferase in the comparison with 1,1,2-trichlorotrifluoroethane, and in protein, albumin, and calcium in the comparison with LipoClear. Differences in other parameters did not exceed the LCSI. Conclusions: High-speed centrifugation ($10,000{\times}g$ for 15 minutes) can be used instead of ultracentrifugation to remove lipemia in serum/plasma samples. LipoClear and 1,1,2-trichlorotrifluoroethane are unsuitable as they interfere with the measurement of certain parameters.

Association of Candidate Genes with Production Traits in Korean Dairy Proven and Young Bulls

  • Jang, G.W.;Cho, K.H.;Kim, T.H.;Oh, S.J.;Cheong, I.C.;Lee, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.165-169
    • /
    • 2005
  • This study was performed to offer effective basic data for selection and improvement of Korean dairy cattle through identifying distributional properties among candidate genes (bovine butyrophilin, signal transducers and activators of transcription 5a, and prolactin hormone). In this study, polymorphisms of candidate genes were identified and the relationships between loci and production traits of each gene were analyzed using frozen semen of Holstein bulls (19 proven and 77 candidates). In butyrophilin (BTN) locus, polymorphisms information contents (PIC) value of BTN2 (0.372) was higher than those of others (BTN1; 0.155, BTN3; 0.254, BTN4; 0.169). As a result of analysis of genotyping STAT5a, using single stranded conformational polymorphism (SSCP) method and microsatellite locus, PIC values were 0.189 and 0.457, respectively. And PIC value of prolactin hormone gene was 0.176. In the relationships between genotypes and production traits, BTN3 was associated with 305-day production traits (p<0.05). PTAs for B allele were such as 110.43, 88.28 and 75.25 in BTN1, 3, 4 and these values were higher than those of A allele, but in the case of BTN2, A allele with 154.19 was higher than that of B allele. The results obtained from using candidate genes may be used as an useful index for the genetic improvement of dairy cattle population in Korea, and further studies are needed.

Specific Knockdown of Nanog Expression by RNA Interference in P19 Embryonal Carcinoma Stem Cells (P19 배아 암종 줄기세포에서 RNA 간섭에 의한 Nanog 유전자 발현의 특이적 억제)

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.159-168
    • /
    • 2008
  • Nanog is a newly identified member of the homeobox family of DNA binding transcription factors that functions to maintain the undifferentiated state of stem cells. However, molecular mechanisms underlying the function of Nanog remain largely unknown. To elucidate the regulatory roles of Nanog involved in maintenance of P19 embryonal carcinoma (EC) stem cells, we transfected three small interfering RNA (siRNA) duplexes targeted against different regions of the Nanog gene into P19 cells. The Nanog siRNA-100 duplexes effectively decreased the expression of Nanog up to 30.7% compared to other two Nanog siRNAs, the Nanog siRNA-400 (67.9 %) and -793 (53.0%). When examined by RT-PCR and real-time PCR, the expression of markers for pluripotency such as Fgf4, Oct3/4, Rex1, Sox1 and Yes was downregulated at 48 h after transfection with Nanog siRNA-100. Furthermore, expression of the ectodermal markers, Fgf5 and Isl1 was reduced by Nanog knockdown. By contrast, the expression of other markers for pluripotency such as Cripto, Sox2 and Zfp57 was not affected by Nanog knockdown at this time. On the other hand, the expression of Lif/Stat3 pathway molecules and of the endoderm markers including Dab2, Gata4, Gata6 and the germ cell nuclear factor was not changed by Nanog knockdown. The results of this study demonstrated that the knockdown of Nanog expression by RNA interference in P19 cells was sufficient to modulate the expression of pluripotent markers involved in the self-renewal of EC stem cells. These results provide the valuable information on potential downstream targets of Nanog and add to our understanding of the function of Nanog in P19 EC stem cells.

  • PDF

Randomized, Double-Blind Study of Efficacy and Safety of Gynostemma pentaphyllum Ethanol Extract in a Normal Population (정상인에서 스트레스와 불안에 대한 돌외추출물의 효과와 안전성에 관한 무작위 배정 이중 맹검 임상시험)

  • Jeong, Seong-Hae;Lee, Myung-Koo;Park, Mi-Sook;Kim, Jae-Moon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 2011
  • The purpose of this study was to evaluate the clinical efficacy of a standardized special ethanol extract from Gynostemma pentaphyllum as a management for anxiety and stress of normal population. This is a two-arm, parallelgroup, randomized, double blind clinical trial comparing Gynostemma pentaphyllum extract 200 mg bid (GP-EX, n=48) or placebo bid (n=54). The main outcome measures were the decrease in anxiety sensitivity index (ASI), the State version (S-STAI) of the Stait-Trait Anxiety Inventory (STAI) and the Trait version (T-STAT) of the STAI from baseline over a 6 weeks treatment period. In more anxious group (S-STAI50 or ASI19), the anxiety in group with GP-EX was decreased significantly than one in normal population with placebo [S-STAI50: T-STAI = from $57.7{\pm}6.5$ ($mean{\pm}S.D.$) to $46.8{\pm}11.2$ in normal population with GP-EX, p=0.002 vs. from $54.1{\pm}9.9$ to $49.0{\pm}9.6$ in normal population with placebo, p>0.05; ASI19: T-STAI = from $47.2{\pm}12.0$ to $42.4{\pm}11.1$ in normal population with GP-EX, p=0.022 vs. from $48.7{\pm}11.5$ to $46.0{\pm}10.4$ in normal population with placebo, p>0.05]. The most frequently reported adverse reactions considered possibly related to treatment were mild gastrointestinal events. GP-EX is more effective than placebo and is well tolerated as a therapy for anxiety and stress of normal population.