• Title/Summary/Keyword: STAT2

Search Result 368, Processing Time 0.023 seconds

4-(Tert-butyl)-2,6-bis(1-phenylethyl)phenol induces pro-apoptotic activity

  • Kim, Jun Ho;Lee, Yunmi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.253-259
    • /
    • 2016
  • Previously, we found that KTH-13 isolated from the butanol fraction of Cordyceps bassiana (Cb-BF) displayed anti-cancer activity. To improve its antiproliferative activity and production yield, we employed a total synthetic approach and derivatized KTH-13 to obtain chemical analogs. In this study, one KTH-13 derivative, 4-(tert-butyl)-2,6-bis(1-phenylethyl)phenol (KTH-13-t-Bu), was selected to test its anti-cancer activity. KTH-13-t-Bu diminished the proliferation of C6 glioma, MDA-MB-231, LoVo, and HCT-15 cells. KTH-13-t-Bu induced morphological changes in C6 glioma cells in a dose-dependent manner. KTH-13-t-Bu also increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, KTH-13-t-Bu increased the levels of cleaved caspase-3 and -9. In contrast, KTH-13-t-Bu upregulated the levels of pro- and cleaved forms of caspase-3, -8, and -9 and Bcl- 2. Phospho-STAT3, phospho-Src, and phospho-AKT levels were also diminished by KTH13-t-Bu treatment. Therefore, these results strongly suggest that KTH-13-t-Bu can be considered a novel anti-cancer drug displaying pro-apoptotic activity.

A STUDY ON PHYSICAL PROPERTIES OF INTEROCCLUSAL RECORDING MATERIALS (악간 기록재료의 물리적 특성에 관한 연구)

  • Kang, Jeong-Kil;Yu, Hyoung-Woo;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.657-664
    • /
    • 1996
  • The purpose of this study was to compare the dimensional stability, compression resistance, elastic recovery and surface hardness of elastomeric interocclusal recording materials. Five commonly used elastomeric interocclusal recording materials(Ramitec, Regisil, Blue-Mousse, Stat-Br, Coltoflax) were selected for this study. According to ADA specification No. 19, two types of specimen were fabricated. Cylinder type specimens were used to test compression resistance and elastic recovery and plate type specimens were used to evaluate dimensional stability and surface hardness. Paired t-test was applied to detect significance among the occlusal registration materials. The obtained results were as follows: 1. There were statistical difference in dimensional stability between the elastic interocclusal recording materials. The dimensional stability of silicone was higher than that of polyether tested(p<0.05). 2. Coltoflax was significantly less resistance to compression than the other elastic interocclusal recording materials(p<0.001). 3. The elastic recovery capacity of Blu-Mousse and Stat-Br is better than that of Coltoflax (p<0.01). 4. The surface hardness of Coltoflax was lower than that of Blu-Mousse and Stat-Br(p<0.05). 5. The percentage dimensional change of alll materials was acceptable according to the limid of 0.5% suggeted by ADA specificatin No. 19.

  • PDF

An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation

  • Yoon, I Na;Hong, Ji;Zhang, Peng;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.350-356
    • /
    • 2017
  • We previously reported that the CopA3 peptide (LLCIALRKK, ${\small{D}}-form$) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the ${\small{D}}-form$, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the ${\small{L}}-form$ structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor $(TNF)-{\alpha}$ secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and $TNF-{\alpha}$. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

Inhibitory activity of Terminalia chebula extract against TNF-α/IFN-γ-induced chemokine increase on human keratinocyte, HaCaT cells (TNF-α/IFN-γ 유도된 각질형성세포 염증에서 가자 추출물의 케모카인 저해 효과)

  • Jo, Il-Joo
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.41-47
    • /
    • 2022
  • Objectives : Terminalia chebula (TC) has been used as a traditional remedy to treat gastrointestinal infectious and inflammatory diseases. However, its protective effects and mechanisms against skin inflammation have not been well-elucidated. Thus, the aim of this study is to evaluate the protective effects of the TC water extract and also to suggest a putative mechanism of TC against skin injury on human keratinocytes, HaCaT cells. Methods : HaCaT cells were pre-treated with TC for 1 h and then stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) (10 ng/mL each) to induce skin inflammation and injury. After 24 h, the cells were harvested to evaluate the expression of Th2 chemokines, such as C-C motif chemokine ligand 5 (CCL5, also known as RANTES), C-C chemokine ligand 17 (CCL17, also known as TARC) and C-C chemokine ligand 22 (CCL22, also known as MDC). To investigate the regulatory mechanisms of TC, we also assessed the phosphorylation of signal transducer and activator of transcription 1 (STAT1) signaling pathways in HaCaT cells. Results : Treatment of TC decreased the mRNA levels of RANTES, TARC and MDC with a concentration dependent manner against co-stimulation of TNF-α and IFN-γ. In addition, TC significantly reduced TNF-α and IFN-γ induced phosphorylation of STAT1. Conclusions : In summary, we propose that TC may be a promising candidate for anti-inflammatory skin protector through the inhibition of chemokines via STAT1 deactivation.

Quercetin suppress CCL20 by reducing IκBα/STAT3 phosphorylation in TNF-α/IL-17A induced HaCaT cells (TNF-α/IL-17A 유도된 HaCaT 세포주에서 Quercetin의 IκBα/STAT3 인산화 조절에 의한 CCL20 발현 억제)

  • Kim, Mi Ran;Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.211-219
    • /
    • 2020
  • Quercetin is a polyphenol compound with excellent antioxidant and anti-inflammatory activity. However, little has been reported about the efficacy of quercetin to control psoriasis. Thus, we aimed to investigate the effect of quercetin to regulate psoriatic dermatitis with HaCaT cell lines activated by TNF-α and IL-17A, which are in vitro psoriasis skin models. When quercetin was treated with TNF-α-activated HaCaT cell line, inflammatory cytokine expressions such as IL-1α, IL-1β and IL-6 were reduced by 49.1±7.14, 42.8±8.16, and 34.5±2.52%, respectively. In addition, mRNA expression levels of IL-8 and CCL20 the chemokines that attract immune cells such as Th17 cells and dendritic cells to the inflammatory reaction site, were also reduced by 38.4±5.83 and 52.9±4.59% compared to the TNF-α treatment group. The expression of proteins KRT6A and KRT16, which was nonspecifically increased in psoriatic skin was also significantly suppressed. Moreover, phosphorylation of IκBα and STAT3 proteins activated by TNF-α was also significantly inhibited. After stimulating the HaCaT with IL-17A, known as another psoriasis-inducing cytokine, it was observed that IκBα mRNA expression decreased by 55.8±5.28%, and STAT3 phosphorylation was downregulated by 36.3±6.81%. Finally, after co-activation by TNF-α/IL-17A, quercetin inhibited all of IL-1α, IL-1β, IL-6, TNF-α and CCL20 gene expression. The above results strongly suggest that quercetin is a material that has not only anti-oxidant and anti-inflammatory activities, but also has an activity in improving psoriasis.

Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

  • Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif ($^{79}{\underline{P}}GY{\underline{P}}WP^{84}$). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif ($^{79}{\underline{A}}GY{\underline{A}}WP^{84}$) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.

DMfree®(Green Tea Extract) Inhibits IL-6 of Mycobacterium leprae Infected Mesenchymal Stem Cells (디엠프리(녹차추출물)에 의한 나균 감염 중간엽줄기세포의 IL-6 생산 억제)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.695-701
    • /
    • 2015
  • Previous reports revealed that DMfree (green tea extract) inhibited expression of the IL-6 gene in Mycobacterium lepraeinfected MSCs (mesenchymal stem cells). This study aimed to measure IL-6, $IL-1{\beta}$, $TNF-{\alpha}$ and PGE2 production in M. leprae-infected MSCs using ELISA. To confirm the effect of DMfree on IL-6 and signal transduction, a western blotting test was performed. DMfree inhibited the expression of IL-6 in the MSCs and the heterodimer of STAT3, which also affects the expression of multiple genes. Though DMfree pre-treatment of control MSCs produced a baseline level of IL-6, it significantly inhibited the production of IL-6 in M. leprae-infected MSCs. There was no significant difference in IL-6 production between 1 and 7 day treatment groups. M. leprae-infected MSCs produced more $IL-1{\beta}$, $TNF-{\alpha}$ and PGE2, but DMfree could not inhibit their production at a physiological concentration. This is different from other reports that used higher concentration of EGCG treatment, resulting in significant inhibition of the cytokines. The inhibition appears to be related to the concentration of EGCG. These results indicate that DMfree can alleviate inflammation involving IL-6.

Synthesis, Antioxidant and Molecular Docking Studies of (-)-Catechin Derivatives

  • Kumar, Deepak;Kumar, Raj;Ramajayam, R.;Lee, Keun Woo;Shin, Dong-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.106-112
    • /
    • 2021
  • 12 kinds of (-)-catechin derivatives were designed and synthesized. The catechin derivatives were evaluated their antioxidant activities using DPPH method. Most of them showed good antioxidant activity, particularly compounds 1d, 1e and 1j exhibited more activity than butylated hydroxytoluene (BHT). Molecular docking studies for compounds 1d, 1e and 1j with STAT1 showed not only sufficent characteristics binding cavity but also agreement with the observed biological activity. Acording to docking results, the compounds showed greater than hydrogen bonding, hydrophobic interactions, electrostatic interactions, and Van der Waals interactions as compared to the reference compound. They formed hydrogen bonds with important residues such as Lys566, His568, Leu570, and Phe644. The compounds showed a novel hydrogen bonding interaction with Arg649, which was not reported previously. Our results might suggest the compounds could serve as a novel anti-oxidant agent.

Astaxanthin Ameliorates Atopic Dermatitis by Inhibiting the Expression of Signal Molecule NF-kB and Inflammatory Genes in Mice

  • Donghwan, Kim;Yong-Suk, Kim;Ho Sueb, Song
    • Journal of Acupuncture Research
    • /
    • v.39 no.4
    • /
    • pp.304-309
    • /
    • 2022
  • Background: This study was conducted to determine the anti-inflammatory effect of astaxanthin, on atopic dermatitis. Methods: Changes in mouse body weight, lymph node weight, and the degree of improvement in symptoms were measured to determine the inflammatory response. Real-time reverse transcription-polymerase chain reaction tests were performed to determine the degree of expression of inflammation-related cytokines (IL-31 and IL-33 and chemokines such as CCL17 and CCL22), and western blot analysis was performed to evaluate the expression of inflammation-related factors (iNOS, COX-2, and NF-kB signaling molecules p-IkBα, p50, p-65 and pSTAT3). Results: The degree of symptoms significantly improved in the PA+AX group. Lymph node weight in the PA+AX group was lower than the PA group. Inflammatory cytokines (IL-31, IL-33, and inflammatory chemokines such as CCL17 and CCL22) were significantly reduced in the PA+AX group compared with the PA group. The expression of inflammatory genes (iNOS, COX-2, NF-kB and signaling molecules (p-IkBα, p50, p65, and p-STAT 3) was lower in the PA+AX group compared with the PA group. Conclusion: Astaxanthin may modulate the inflammatory response in a mouse model of atopic dermatitis and has an anti-inflammatory effect.

Effect of Fucoidan on Angiogenesis and Gene Expression in Human Umbilical Vein Endothelial Cells (후코이단이 혈관 내피세포의 신생혈관 생성 효과 및 관련 유전자의 발현에 미치는 영향)

  • Park, Ho;Kim, Beom-Su
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.323-328
    • /
    • 2017
  • Angiogenesis is a process including members of the angiogenic factors. In particular, fibroblast growth factor 2 (FGF2) is considered the most potent angiogenic factor because it promotes cell proliferation and tube formation. A recent study reported that fucoidan derived from marine plant potentiated FGF-2 induced tube formation in human endothelial cells. On the other hand, the molecular mechanisms involved in the angiogenic activity of fucoidan and FGF2 are unknown. In this study, a fucoidan treatment promoted angiogenesis induced by FGF2. The effects of fucoidan on FGF2-induced angiogenesis were confirmed by a proliferation assay using a CellTiter96 Aqueous One solution after a treatment with fucoidan and FGF2. The tube formation and wound healing assay for the angiogenic activity were also confirmed. Reverse transcription PCR showed a change in the mRNA of vascular endothelial growth factor-A (VEGF-A), intercellular adhesion molecule-1 (ICAM-1), matrix metallopeptidase9 (MMP9), and the signal transducer and activator of transcription3 (STAT3). In summary, the Fucoidan/FGF2 treatment induced an increase in cell proliferation, improved the tube formation and wound healing activity, and altered the STAT3, VEGF-A, ICAM-1, and MMP9 mRNA expression levels. Further research will be needed to provide a scientific explanation in terms of cell-signaling and confirm the present findings.