• Title/Summary/Keyword: STAR-CCM+

Search Result 146, Processing Time 0.025 seconds

Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas (선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산)

  • Oh, Seunghoon;Yang, Jinho;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

A Fundamental Study on Offshore Structures of high pressure control valve (해양구조물용 고압 컨트롤 밸브에 대한 기초 연구)

  • Lee, Chi-Woo;Jang, Sung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor (희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측)

  • Yi, Jae-Bok;Jeong, Dae-Ro;Huh, Kang-Yul;Jin, Jae-Min;Park, Jung-Kyu;Lee, Min-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1257-1264
    • /
    • 2011
  • This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

Modeling Dynamic Behavior and Injection Characteristic of a GDI Injector (GDI 인젝터의 동적 거동과 분사 특성에 대한 모델링)

  • Lee, Kye Eun;Kim, Na Young;Cho, Young Jun;Lee, Dong Ryul;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.210-217
    • /
    • 2017
  • A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

The Simulation about the Air Flow and Pressure Drop inside the Metal Foam (발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Jin, Mei-Hua;Jang, Seok-Jun;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

A Numerical Analysis on High Pressure Control Valve for Offshore (해양구조물용 고압 컨트롤 밸브 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Jeong, Hwi-Won;Nam, Tae-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.