• Title/Summary/Keyword: STABILITY

Search Result 34,994, Processing Time 0.069 seconds

A numerical analysis study on the effects of rock mass anisotropy on tunnel excavation (암반의 이방성이 터널 굴착에 미치는 영향에 대한 수치해석적 연구)

  • Ji-Seok Yun;Sang-Hyeok Shin;Han-Eol Kim;Han-Kyu Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • In general tunnel design and analysis, rock masses are often assumed to be isotropic. Under isotropic conditions, material properties are uniform in all directions, leading to a higher evaluation of tunnel stability. However, actual rock masses exhibit anisotropic characteristics due to discontinuities such as joints, bedding planes, and faults, which cause material properties to vary with direction. This anisotropy significantly affects the stress distribution during tunnel excavation, leading to non-uniform deformation and increased risk of damage. Therefore, thorough pre-analysis is essential. This study analyzes the displacement and stress changes occurring during tunnel excavation based on rock anisotropy. A three-dimensional numerical analysis was performed, selecting anisotropy index and dip angles as variables. The results showed that as the anisotropy index increased, the displacement in the tunnel increased, and stress concentration became more pronounced. The maximum displacement and shear stress were observed where the dip planes met the tunnel.

An Empirical Study on the Efficacy of Mindfulness Activation Tools for Psychological Stability Support: A Focus on Voluntary Groups (심리 안정을 지원하는 현존의식 활성화 도구의 효용성 연구 - 자발적 포커스그룹 중심)

  • Joong Ho Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.383-388
    • /
    • 2024
  • This study conducted voluntary focus group user observations to empirically validate the efficacy of the self-developed psychological support mobile application, "Mindful Now". The app is structured as an interactive game format, enabling individuals to activate self-awareness of mindfulness states anytime, anywhere. It consists of a 3-step process of sensory/emotional/consciousness awareness, facilitating the expression of non-judgmental awareness. To demonstrate the effectiveness of this mindful activation in enhancing psychological well-being such as happiness and stress reduction, voluntary mindfulness mobile app usage was tracked among 49 university students. The results revealed significant improvements, with a 14.4% increase in SWLS happiness index and a 17.1% decrease in PSS-10 stress levels among 12 users who used the app continuously for over 60 days to practice mindfulness awareness. Particularly, higher app engagement was observed among students who initially reported relatively lower indices before using the app. The utilization of mobile apps that promote mindful activation aligns with various therapeutic paradigms based on mindfulness and meditation, contributing to advancements in digital therapeutic interventions for psychological support.

Study on The Effect of Electrode Drying Temperature on The Silicon Electrode Characteristics of Lithium Secondary Batteries (전극 건조 온도가 리튬이차전지의 실리콘 전극 특성에 미치는 영향 연구)

  • Dong-Wan Ham;Myeong-Hui Jeong;Jeong-Tae Kim;Beom-Hui Lee;Hyeon-Mo Moon;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.97-104
    • /
    • 2024
  • The electrodes of commercialized lithium secondary batteries are manufactured through a wet coating process, and the drying process (DC) is a very important factor as to electrode production speed and process cost. In this study, silicon anodes were manufactured under high-temperature (180 ℃) and low-temperature (50 ℃) DC to investigate the quality and the electrochemical performance of Si-electrodes according to DC. High-temperature DC can quickly evaporate the solvent in the Si-electrode slurry, improving the electrode production rate. However, this also causes the electrode composite to peel off from the current collector. As a result, the Si-electrode's adhesion weakened, and the electrode coating's quality deteriorated. In addition, the Si-electrode manufactured under high-temperature was found to have a thicker composite material than the Si-electrode manufactured under low-temperature. Si-electrodes manufactured under high-temperature had higher sheet resistance and lower electrical conductivity than those manufactured under low-temperature. Consequently, the Si-electrode manufactured under low-temperature showed 152.5% superior cycle performance compared to the Si-electrode manufactured under high-temperature. (Discharge capacities of Si-electrodes manufactured under high-temperature and low-temperature DC were 844 and 1287 mAh g-1, respectively, after 300 cycles). Establishing the DC of Si-electrodes can easily provide new perspectives to improve the quality and stability of Si-electrodes.

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators (3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상)

  • Beom-Hui Lee;Dong-Wan Ham;Ssendagire Kennedy;Jeong-Tae Kim;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.88-96
    • /
    • 2024
  • Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.

The Effects of Pilates Breathing on Trunk Muscle Activity and Balance in Adult Females (성인여성에게 필라테스 호흡을 동반한 운동이 몸통의 근활성도 및 균형에 미치는 영향)

  • Moon-Jung Lee;Su -Kyong Lee;Byeong-Jo Kim;Su-Hong Ahn
    • PNF and Movement
    • /
    • v.22 no.2
    • /
    • pp.275-288
    • /
    • 2024
  • Purpose: The purpose of this study was to assess the effects of breathing techniques on trunk muscle activity and balance during Pilates reformer footwork exercises, comparing results both within and between groups before and after the intervention. Methods: Thirty-one adult women over the age of 20 were selected as subjects for this study. They were divided into a Pilates breathing group (n = 15) and a general breathing group (n = 16) using a randomized control group study design. A surface electromyogram was used to measure muscle activity within and between the groups before and after the reformer footwork exercise. Static balance measurements were taken while standing on two legs, and dynamic balance measurements were taken while standing on one leg. All measurements were taken three times, and the average values were used for analysis. Results: The results of the study showed that muscle activity increased with significant differences in the external oblique and transverse abdominal muscles after exercise in the pre-post comparison within the Pilates breathing group (p < 0.05). In the between-group comparison, there was a significant difference in the increase in muscle activity of the external oblique and transverse abdominal muscles in the Pilates breathing group (p < 0.05). In the pre-post comparison of static and dynamic balance within the Pilates breathing group, there was a significant increase (p < 0.05) after exercise. The Pilates breathing group also showed a significant increase even in the between-group comparison (p < 0.05). Conclusion: This study confirmed that reformer footwork exercise accompanied by Pilates breathing has positive effects on muscle activity and static balance ability of trunk muscles in adult women. Therefore, reformer footwork exercise accompanied by Pilates breathing can be presented as an effective exercise method to increase trunk stability and balance ability through the simultaneous activity of the trunk muscles.

Analyzing K-POP idol popularity factors using music charts and new media data using machine learning (머신러닝을 활용한 음원 차트와 뉴미디어 데이터를 활용한 K-POP 아이돌 인기 요인 분석)

  • Jiwon Choi;Dayeon Jung;Kangkyu Choi;Taein Lim;Daehoon Kim;Jongkyn Jung;Seunmin Rho
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.55-66
    • /
    • 2024
  • The K-POP market has become influential not only in culture but also in society as a whole, including diplomacy and environmental movements. As a result, various papers have been conducted based on machine learning to identify the success factors of idols by utilizing traditional data such as music and recordings. However, there is a limitation that previous studies have not reflected the influence of new media platforms such as Instagram releases, YouTube shorts, TikTok, Twitter, etc. on the popularity of idols. Therefore, it is difficult to clarify the causal relationship of recent idol success factors because the existing studies do not consider the daily changing media trends. To solve these problems, this paper proposes a data collection system and analysis methodology for idol-related data. By developing a container-based real-time data collection automation system that reflects the specificity of idol data, we secure the stability and scalability of idol data collection and compare and analyze the clusters of successful idols through a K-Means clustering-based outlier detection model. As a result, we were able to identify commonalities among successful idols such as gender, time of success after album release, and association with new media. Through this, it is expected that we can finally plan optimal comeback promotions for each idol, album type, and comeback period to improve the chances of idol success.

  • PDF

Solid Electrolyte Composed of Poly(vinyl alcohol) and Oligo(3,4-ethylenedioxythiophene) Having a Crosslinked Structure (가교 구조를 갖는 poly(vinyl alcohol)과 oligo(3,4-ethylenedioxy-thiophene)으로 이루어진 고체 전해질)

  • Gyo Jun Song;Min Su Kim;Nam-Ju Jo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2024
  • Currently, lithium secondary batteries have been used as medium- or large-sized energy sources such as electric vehicles and energy storage system (ESS) due to their high energy and eco-friendly characteristics. Currently commercialized lithium secondary batteries do not fully meet the demands for high energy density and safety. Many studies on solid electrolytes are being conducted to satisfy these requirements. In order to commercialize a solid electrolyte, it is important to supplement the low ion conductivity and high interface resistance with an electrode compared to the organic liquid electrolyte. Therefore, in this study, oligo(3,4-ethylenedioxythiophene (EDOT)) is added to poly(vinyl alcohol) (PVA), which is a polymer matrix with ion conductivity and sticky characteristics, to decrease the interfacial resistance with the same type of polythiophene (PTh)-based electrode. In addition, the addition of porous silicon dioxide (SiO2) filler improves lithium salt dissociation ability and increases ionic conductivity. And the electrochemical stability of the solid electrolyte, which has been lowered due to additives, is improved by introducing a cross-linked structure using boric acid (BA).

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode (실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계)

  • Eun Young Lim;Eunsol Lee;Jin Hong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2024
  • Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.

Electrochemical Characteristics of 2-Dimensional Titanium Carbide(MXene)/Silicon Anode Composite Prepared by Electrostatic Self-assembly (정전기적 자가결합법으로 제조된 2차원 티타늄 카바이드(MXene)/실리콘 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.262-268
    • /
    • 2024
  • In this study, the MXene/Si composite was prepared by electrostacic assembly with 2-dimensional structured titanium carbide (MXene) and nano silicon for anode material of high-performance lithium-ion battery. Ti3C2Tx MXene was synthesized by etching the Ti3AlC2 MAX with LiF/HCl, and the surface of nano silicon was charged to positively using CTAB (Cetyltrimethylammonium bromide). The MXene/Si anode composite was successfully manufactured by simple mixing process of synthesized MXene and charged silicon. The physical and electrochemical properties of prepared composite were investigated with MXene-silicon composition ratio, and the surface of electrode after cycles was analyzed to evaluate stability of the electrode. The MXene/Si composites demonstrated high initial discharge capacities of 1962.9, 2395.2 and 2504.3 mAh/g as the silicon composition ratio increased to 2, 3 and 4 compared to MXene, respectively. MXene/Si-4, which is MXene and silicon ratio with 1 : 4, exhibited 1387.5 mAh/g of reversible capacity, 74.5% of capacity retention at 100 cycles and high capacity of 700.5 mAh/g at high rate of 4.0 C. As the results, the MXene/Si composite prepared by electrostatic-assenbly could be applied to anode materials for high-performance LIBs.

Characterization of Carbamazepine-Imprinted Acorn Starch/PVA-Based Biomaterials (카바마제핀 각인 도토리 전분/PVA 기반 바이오소재의 특성)

  • Kyeong-Jung Kim;Ji-Hoon Kang;Bo-Gyeong Kim;Min‑Jin Hwang;Soon-Do Yoon
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.192-199
    • /
    • 2024
  • In this study, carbamazepine (CBZ) imprinted starch/PVA-based biomaterials were prepared by the casting method and UV irradiation, and their physicochemical properties, CBZ adsorption ability, and release properties were investigated. The surface properties of the prepared biomaterials were characterized using FE-SEM, while the stability of CBZ under UV irradiation and the functional groups of the biomaterials were characterized using FT-IR analysis. The adsorption properties of CBZ on the biomaterials were evaluated by binding isotherm and Scatchard plot. Results indicate that CBZ imprinted biomaterials possess a specific binding site of CBZ. To evaluate the applicability of the transdermal drug delivery system, the release properties of CBZ from prepared biomaterials using various pH buffers and artificial skin at 36.5 ℃ were investigated. Results indicated that the CBZ release at high pH was faster than at low pH. In addition, CBZ was released continuously for 12 h in the artificial skin test. The drug release mechanism of CBZ followed a pseudo-Fickian diffusion mechanism in buffer solution, whereas the release from artificial skin exhibited a non-Fickian diffusion mechanism.