• Title/Summary/Keyword: SST Turbulent Model

Search Result 100, Processing Time 0.033 seconds

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Analysis of the turbulent flow on the periodically arranged semi-circular ribs in a rectangular channel (사각채널 내 주기적으로 배열된 반원 리브 영향의 유동해석)

  • Lee, G.H.;Nine, Md.J.;Choi, S.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 2011
  • The flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow have been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio was 0.07 and rib height to channel height ratio was e/H=0.117. The v2-f turbulence model and SST k-${\omega}$ turbulence model were used to find the flow characteristics of near the wall which are suited for realistic phenomena. The numerical analysis results show turbulent flow characteristics and pressure drop at the near the wall as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow, and v2-f turbulence model simulation results have a good agreement with experimental.

Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity (하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석)

  • Kang, Min Jae;Jung, Jae Hwan;Cho, Seok Kyu;Hur, Jea-Wook;Kim, Sanghyeon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

Shape optimization of angled ribs to enhance cooling efficiency (냉각효율 향상을 위한 경사진 리브의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.627-630
    • /
    • 2003
  • This work presents a numerical procedure to optimize the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. SST turbulence model is used as a turbulence closure. The width-to-height ratio of the rib, rib height-to-channel height ratio, pitch-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. D-optimal experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained for the weighting factors in the range from 0.0 to 1.0.

  • PDF

Numerical Simulation of Square Cylinder Near a Wall with the ε -SST Turbulence Model (ε -SST 난류 모델을 적용한 벽면 근처 정사각주 유동장의 수치 해석)

  • Lee,Bo-Seong;Kim,Tae-Yun;Park,Yeong-Hui;Lee,Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.1-7
    • /
    • 2003
  • The numerical simulation of flow-filed around a square cylinder near a wall with $\varepsilon$-SST turbulence model is carried out in this study. The newly suggested $\varepsilon$-SST turbulence model that modifies the original SST turbulence model is proved to yield more accurate results than the other 2-equation turbulence models in large separation region around a bluff body. Therefore, $\varepsilon$-SST turbulence model can be effectively applied for predicting the flow-fields with large separation. And it is found that vortex shedding is suppressed below the critical gap height, the Strouhal number is affected by the gap height and the wall boundary layer thickness.

Detached Eddy Simulation of a Developing Turbulent Flow in a 270° Curved Duct (DES 기법을 이용한 270°곡덕트에서 발달하는 난류 유동의 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Keun;Choi, Young-Don;Lee, Joo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.471-478
    • /
    • 2008
  • Detached Eddy Simulation (DES) is performed for developing turbulent flow of the $270^{\circ}$ curved duct at a Reynolds number of 56,690. The curvature ratio on the basis of a centric radius $R_c$ and a duct height H is 3.357. Turbulence models adopted are k-$\omega$ model for Reynolds Average Navier-Stokes (RANS) equation Simulation and Shear Stress Transport (SST) model for DES. DES is used as the hybrid computation technique combined with RANS-SST and Large Eddy Simulation (LES). Predicted results are compared with measured results including the distributions of Reynolds stresses and the flow characteristics on the symmetric plane of curved duct are presented. Judging from the comparison between the predicted and the measured results, the DES approach is applicable to calculate the developing turbulent flow in a $270^{\circ}$ curved duct.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

Analysis of turbulent heat transfer over V-shaped ribs (V-형 사각리브에 의한 난류열전달 해석)

  • Lee, Young-Mo;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.169-172
    • /
    • 2005
  • Numerical analysis of turbulent flow in three-dimensional channel with V-shaped ribs extruded on both walls has been carried out. Reynolds-averaged Navier-Stokes are calculated for analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for heat transfer rate show good agreements with experimental data.

  • PDF

Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow (큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향)

  • Heo, Junyoung;Jung, Junyoung;Sung, Hong-Gye;Yang, June-Seo;Lee, Ji-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulent models suitable for large scale separation flows perturbed by a pintle strokes. Two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and the k-${\omega}$ SST models with or without compressibility correction proposed by Wilcox and Sarkar are evaluated. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. Mach disk location and pressure recovery profiles in flow separation region are noticeably distinct between turbulent models of k-${\varepsilon}$ and k-${\omega}$ SST. The compressible effect corrections to those models improve resolving of separation flow behaviors. The compressibility corrections to k-${\varepsilon}$ model have provided very comparable results with test data.