• Title/Summary/Keyword: SST Turbulence Model

Search Result 257, Processing Time 0.028 seconds

Modification of SST Turbulence Model for Computation of Oscillating Airfoil Flows (진동하는 익형 주위의 유동장 해석을 위한 SST 난류 모델의 수정)

  • Lee Bo-sung;Lee Sangsan;Lee Dong Ho
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.44-51
    • /
    • 1999
  • A modified version of SST turbulence model is suggested to simulate unsteady separated flows over oscillating airfoils. The original SST model, which shows good performance in predicting various steady flows, often results in oscillatory behavior of aerodynamic loads in large separated flow regions. It is shown that this oscillatory behavior is due to the adoption of the absolute value of vorticity in generalizing the original model. As a remedy, a modification is made such that the vorticity in the original SST model is replaced by strain rate. The present model is verified for a mild separated airfoil flow at fixed angle of incidence and for unsteady flowfields about oscillating airfoils. The results are compared with BSL model and original SST model. It is illustrated that the present model gives a better agreement with the experimental results than other two models.

  • PDF

Numerical Simulation of Square Cylinder Near a Wall with the ε -SST Turbulence Model (ε -SST 난류 모델을 적용한 벽면 근처 정사각주 유동장의 수치 해석)

  • Lee,Bo-Seong;Kim,Tae-Yun;Park,Yeong-Hui;Lee,Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.1-7
    • /
    • 2003
  • The numerical simulation of flow-filed around a square cylinder near a wall with $\varepsilon$-SST turbulence model is carried out in this study. The newly suggested $\varepsilon$-SST turbulence model that modifies the original SST turbulence model is proved to yield more accurate results than the other 2-equation turbulence models in large separation region around a bluff body. Therefore, $\varepsilon$-SST turbulence model can be effectively applied for predicting the flow-fields with large separation. And it is found that vortex shedding is suppressed below the critical gap height, the Strouhal number is affected by the gap height and the wall boundary layer thickness.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow (초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정)

  • Kam, Ho Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • Assessment and validation of RANS turbulence models are conducted for the optimal analysis of supersonic converging-diverging nozzle through the comparison between computational results and experimental data. One/two equation turbulence closures such as Spalart-Allmaras, RNG k-${\varepsilon}$, and k-${\omega}$ SST are employed to simulate the two-dimensional nozzle flow. Computational results with the turbulence models mentioned fairly well predict shock structure of the nozzle-inside and pressure distribution along the wall. Especially, SST model among the employed ones shows the best agreement to experimental results.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Study on the effect turbulence models for the flow through a subsonic compressor cascade (2차원 아음속 압축기 익렬유동에서의 난류모델 효과에 관한 연구)

  • Nam Gyeong-U;Baek Je-Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51-57
    • /
    • 2001
  • The eddy viscosity turbulence models were applied to predict the flows through a cascade, and the prediction performances of turbulence models were assessed by comparing with the experimental results for a controlled diffusion(CD) compressor blade. The original $\kappa-\omega$ turbulence model and $\kappa-\omega$ shear stress transport(SST) turbulence model were used as two-equation turbulence model which were enhanced for a low Reynolds number flow and the Baldwin-Lomax turbulence model was used as algebraic turbulence model. Farve averaged Wavier-Stokes equations in a two-dimensional, curvilinear coordinate system were solved by an implicit, cell-centered finite-volume computer code. The turbulence quantities are obtained by lagging when the men flow equations have been updated. The numerical analysis was made to the flows of CD compressor blade in a cascade at three different incidence angles (40. 43.4. 46 degrees). We found the reversion in the prediction performance of original $\kappa-\omega$ turbulence model and $\kappa-\omega$ SST turbulence model when the incidence angie increased. And the algebraic Baldwin-Lomax turbulence model showed inferiority to two-equation turbulence models.

  • PDF

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng;Li, Yongle;Cai, C.S.;Liao, Haili;Xu, G.J.
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.87-105
    • /
    • 2013
  • Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.

Evaluation of Turbulence Models for Analysis of Thermal Striping (Thermal Striping 해석 난류모델 평가)

  • Choi Seok-Ki;Nam Ho-Yun;Wi Myung-Hwan;Eoh Jae-Hyuk;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.142-147
    • /
    • 2005
  • A numerical study of evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple jet flow with the same velocity but different temperature. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLE algorithm. The results of the present study show that the temporal oscillation of temperature is predicted only by the V2-f model, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. The the two-layer model and the SST model shows nearly the same capability of predicting the thermal striping and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

  • PDF

Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity (하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석)

  • Kang, Min Jae;Jung, Jae Hwan;Cho, Seok Kyu;Hur, Jea-Wook;Kim, Sanghyeon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.