• Title/Summary/Keyword: SST(surface seawater temperature)

Search Result 10, Processing Time 0.023 seconds

Empirical Orthogonal Function Analysis of Seawater Temperature in the Southeastern Hwanghae (東南黃海에서 海水溫度의 EOF 分析)

  • 이흥재;방인권
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.193-202
    • /
    • 1986
  • Spatio-temporal variabilities of seawater temperature at 0 and 30m in the southeastern Hwanghae were studied by variance and empirical orthogonal function(EOF) analysis of long records of temperature between 1967 and 1982. The spatial distribution of monthly mean sea surface temperature has a pattern similar to the long-term annual mean which decreases from south to north. On the contrary, the total variance computed from the annual mean of sea surface temperature(SST) increases from south to north. The variance of SST is found to be two times greater than that at 30m in the study area except coastal area south of Kyunggi Bay. The important variance of temperature seem s to be closely associated with the seasonal change of temperature because the first and second modes of EOF having a seasonal cycle explain 97.6% and 85.2% of variances at 0 and 30m, respectively. There is a large difference in temperature between the northern and southern parts of the study area during winter, while the difference becomes very small during summer. This might reflect that in summer the heat gain of sea surface from the incoming radiation is much more important than the heat loss or the oceanic heat advection. In summer coastal waters south of the Kyunggi Bay and around Mokpo are observed to be colder than offshore waters due to tidal mixing.

  • PDF

Response of Water Temperature in Korean Waters Caused by the Passage of Typhoons (태풍 이동 경로에 따른 한반도 연근해 수온의 반응)

  • Kim, Sang-Woo;Lim, Jin-Wook;Lee, Yoon;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.508-520
    • /
    • 2016
  • In this study, variations in water temperature after the passage of typhoons in Korean waters from 2009-2015 were analyzed. Sea surface temperature (SST) images derived from satellite remote sensing data were used, and water temperature information came from real-time mooring buoys at Yangyang, Gangneung, Samcheok and Yeoungdeok, while wind data was supplied by the Korea Meteorological Administration. Differences in SST observed before and after the passage of a typhoon using the SST images were found to be affected by wind direction as well as hot and cool seasonal tendencies. Coastal water temperatures of the eastern part of the Korean peninsula, located to the right of a typhoon, as in the case of typhoons Muifa, Chanhom, Nakri and Tembin, were lowered by a coastal upwelling system from southerly winds across the water's surface at depths of 15m and 25m. In particular, typhoons Chanhom and Tembin decreased water temperatures by about $8-11^{\circ}C$ and $16^{\circ}C$, respectively. However, temperatures to the left of the typhoons were increased by a downwelling of offshore seawater with a high temperature through the mid and lower seawater layers. After the passage of the typhoons, further mixing of seawater at a higher or lower temperature due to southerly or northerly winds, according to the context, lasted for 1-2 or 4 days, respectively.

A Comparison of Spatio-Temporal Variation Pattern of Sea Surface Temperature According to the Regional Scale in the South Sea of Korea (지역 규모에 따른 한국 남부해역 표층수온의 시·공간적 변동 패턴 비교)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.182-193
    • /
    • 2011
  • In order to compare the spatio-temporal variation pattern of sea surface temperature (SST) in Korea's Southern areas of the sea according to a regional scale, this study has selected the winter and summer seasons for 31 years (1980~2010) in a period aspect and selected three areas of the sea such as the Western areas of the sea (region B) and Eastern areas of the sea (region C) around Jeju Island in addition to overall Southern areas of the sea (region A) in regional aspect. The regression analysis was applied to find out a temporal variation pattern of SST, and the weighted mean center (WMC) of SST as well as analysis of a standard deviational ellipse (SDE) was respectively applied. As a result of regression analysis of SST, it showed a rising long-term trend for all two seasons in three regions. However, though the average SST for 31 years was all similar in three regions in the summer season, the region C appeared more highly than region B in the winter season. The spatial variation pattern of SST for two seasons showed that it is respectively different from each other in three regions. The spatial variation pattern of SST appeared as E-W direction in region A, SE-NW direction in region B and SW-NE direction in region C. In addition, the relationship between the location of the WMC of SST and the average SST showed correlation in regions A and B in the winter season, whereas it appeared that there is no correlation in region C. Accordingly, it can be known that the regional scale should be considered in case of analysis of spatio-temporal variation patterns of SST.

Relationship between Migratory Timing of Salmon (Oncorhynchus keta) into the Wangpi River and Coastal Environment of the Mid-eastern Coastal Water of Korea (동해 중부 연안에서 연어(Oncorhynchus keta)가 왕피천으로 이동하는 시기와 연안 환경간의 관계)

  • Kim, Beom-Sik;Jung, Yong-Woo;Jung, Hae-Kun;Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1067-1079
    • /
    • 2021
  • The coastal water is a space where salmon (Oncorhynchus keta), critical energy-conveying mediator, stay to adapt to different environments while traveling between ocean and river ecosystems for spawning and growth. The mid-eastern coast of Korea (MECW) is the southern limit of salmon distributed in the North Pacific Ocean. Understanding the distribution and migration characteristics of salmon in the MECW is important for the prediction of changes in the amount and distribution of salmon related to changes in the future marine environment. We analyzed the relationship between the salmon migratory timing ascending the Wangpi river and change in vertical seawater temperature and tidal elevation. Overall results highlight that (1) Salmon began to ascend the river when the sea surface water temperature (SST) decreased below 20℃; (2) The number of salmon ascending the river increased when the temperature difference between the upper and lower layers decreased, but decreased when the temperature difference was higher than 5℃; (3) The number of salmon ascending the river peaked, when the SST was 18℃-19℃ and sea levels rose at high tide. This study provide important insight into predicting changes in the ecosystem energy circulation through climate change at its southern distribution limit.

The Characteristics of Phytoplankton Community of Cold Water in the around Sea of Wando in Summer, 2005 (2005년 하계 완도 연안 냉수대 발생시 식물플랑크톤의 분포 특성)

  • Oh, Hyun-Ju;Kim, Seung-Han;Moon, Seong-Yong
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.949-956
    • /
    • 2008
  • The data of temperature, chlorophyll a, phytoplankton and NOAA/AVHRR satellite data were analyzed about 7 stations around Wando Island area on August 30, 2005. The sea water temperature range was from $15.19^{\circ}C$ to $24.97^{\circ}C$, and there was a cold water mass from the station 1 to 5 around the outside of Chungsando Island, the water temperature was lower at the bottom than surface. The salinity was $32.41{\sim}34.03$, DO was $7.40{\sim}9.14mg/L$, but the concentration of chlorophyll a was 1ug/L higher at the bottom than surface. Total phytoplankton appeared from the whole stations were 47 genus, 80 species and diatoms were dominant. A lot of dinoflagellates Ceratium forca and diatoms Thalassithrix spp. mostly appeared in the cold water mass were turned up from the station 1 to 5. 4 groups of phytoplankton clusters were shown in the surface, and 3 groups of phytoplankton clusters were shown at the bottom according to the water temperature. On the ground of the result analyzed with NOAA/AVHRR satellite data, the SST around Wando Island was $22{\sim}25^{\circ}C$, it was formed by thermohaline front latitudinally

Variations of catch of Anchovy and Saury due to oceanic climate change in the Korean seas (해양기후변화에 의한 한국주변 해역에서 멸치와 꽁치의 어장 변화 연구)

  • Oh, Seung-Yeol;Jang, Sun-Woong;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.740-746
    • /
    • 2011
  • The variations of catch of anchovy and saury due to oceanic climate change in the Korean Seas were studied. This study area was $31^{\circ}{\sim}38^{\circ}$ N and $124^{\circ}{\sim}132^{\circ}$ E. And data (seawater temperature, salinity, dissolved oxygen) is used from NFRDI (National Fisheries Research and Development Institute) and SST (Sea Surface temperature) obtained to satellite images (NOAA/AVHRR) during 2000 to 2009. The spatial characteristics are analyzed by GIS (Geographic Information System). The results showed that the average of seawater temperature in the depth of 20m increased $1.45^{\circ}C$ in the South Sea and $0.83^{\circ}C$ in the East Sea, respectively. The maximal catch of anchovy was highest in summer (July~September) and winter (December~March), respectively, in compared with spring (April~June). Catch of anchovy has increased since 2000. The maximal catch of saury was highest in spring (May~June), in compared with spring (August~September). The increment of seawater temperature contributed to increase the catch of anchovy, but catch of saury was decrease in the same times.

SEASONAL DISTRIBUTION OF CHLOROPHYLL-A CONCENTRATION DEDUCED FROM MODIS OCEAN COLOR DATA IN THE EDDY AREA HYUGA-NADA EAST KYUSHU SEAWATER

  • Winarso, Gathot;Hiroyuki, Kikukawa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.475-478
    • /
    • 2006
  • Total primary production resulting from the photosynthetic process can be defined as the amount of organic matter produced in a given period of time. It is proportional to the chlorophyll-a (chl-a) values in the surface layer of the ocean. The MODIS board on Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of chl-a concentration and sea surface temperature (SST) in the upper layer of the sea. The seasonal distribution of chl-a concentration during one year from April 2005 to March 2006 was examined. Light has a role of starting the seasonal cycle. The Kuroshio Current in this area induces many oceanographical features affecting to the change of seasonal control. The chl-a concentration is also seasonal, which is low in summer and high in winter. In summer, the meandering of Kuroshio Current induces strong eddies and increases the chl-a concentration. In autumn, the delayed small autumn bloom occurred until last December due to the Kuroshio Current. When the Kuroshio axis moves far from the coast, the coastal water dominates and increases the concentration even in the winter. The spring bloom starts early at the beginning of March and decreases during the spring.

  • PDF

Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model (신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성)

  • PARK, SOYEONA;LEE, TONGSUP;JO, YOUNG-HEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Currently available surface seawater partial pressure carbon dioxide ($pCO_2$) data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the $pCO_2$ measurements, we construct a neural network (NN) model based on satellite data to map $pCO_2$ for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where $pCO_2$ data are best available, to map and estimate the variability of $pCO_2$ based on in situ $pCO_2$ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted $pCO_2$ values. The RMSE (root mean square error) of the NN model output was $19.2{\mu}atm$ and much less than the variability of in situ $pCO_2$. The variability of $pCO_2$ with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of $pCO_2$ increases. When SST is lower than $15^{\circ}C$, $pCO_2$ variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than $15^{\circ}C$, the variability of $pCO_2$ is less sensitive to changes in SST and chlorophyll. The mean rate of the annual $pCO_2$ increase estimated by the NN model output in the Ulleung Basin is $0.8{\mu}atm\;yr^{-1}$ from 2003 to 2014. As NN model can successfully map $pCO_2$ data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.

Comparison of Distribution and Characteristics of CDOM in Spring 2012 and 2014 in the Southwestern East Sea of Korea (2012년과 2014년 봄철 동해 남서부 해역 유색용존유기물의 분포 및 특성 비교)

  • Park, Hyun-Sil;Park, Mi-Ok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.553-568
    • /
    • 2018
  • Chromophoric Dissolved Organic Matter (CDOM) plays a dominant role in absorbing UV-VIS light and is also important in the biogeochemical carbon cycle due to the production of carbon dioxide from photo-oxidation at the sea surface in marine environments. Since absorption by CDOM was recently found to be responsible for increasing the energy absorbed in the mixed layer by 40 % over pure seawater, the importance of CDOM absorption in seawater for increasing sea surface temperature has come to be well recognized. We measured aCDOM and the absorption characteristics of CDOM during spring 2012 and 2014 in the southwestern East Sea. Distribution of CDOM in spring 2012 and 2014 was compared and S value was used to find the source of CDOM in the study area. As a result, the average $a_{CDOM}$ was $0.237m^{-1}$ ($0.009{\sim}0.988m^{-1}$) and the average S value was $16{\mu}m^{-1}$,which shows coastal properties. Also a positive correlation between Chl a and CDOM was observed ($r^2=0.34$), with an especially strong correlation near coastal stations. aCDOM in 2014 was about 40 % higher than aCDOM in 2012 during spring in the study area. This difference in aCDOM concentration resulted not only from annual variation but also from stratification and photobleaching in late spring 2012. This observation implies the possibility of flux of carbon dioxide into the atmosphere as a result of photo-oxidation in the East Sea.

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.