DOI QR코드

DOI QR Code

Relationship between Migratory Timing of Salmon (Oncorhynchus keta) into the Wangpi River and Coastal Environment of the Mid-eastern Coastal Water of Korea

동해 중부 연안에서 연어(Oncorhynchus keta)가 왕피천으로 이동하는 시기와 연안 환경간의 관계

  • Kim, Beom-Sik (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Jung, Yong-Woo (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Jung, Hae-Kun (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Chung Il (Department of Marine Bioscience, Gangneung-Wonju National University)
  • 김범식 (강릉원주대학교 해양자원육성학과) ;
  • 정용우 (강릉원주대학교 해양자원육성학과) ;
  • 정해근 (국립수산과학원 동해수산연구소 자원환경과) ;
  • 이충일 (강릉원주대학교 해양자원육성학과)
  • Received : 2021.11.27
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

The coastal water is a space where salmon (Oncorhynchus keta), critical energy-conveying mediator, stay to adapt to different environments while traveling between ocean and river ecosystems for spawning and growth. The mid-eastern coast of Korea (MECW) is the southern limit of salmon distributed in the North Pacific Ocean. Understanding the distribution and migration characteristics of salmon in the MECW is important for the prediction of changes in the amount and distribution of salmon related to changes in the future marine environment. We analyzed the relationship between the salmon migratory timing ascending the Wangpi river and change in vertical seawater temperature and tidal elevation. Overall results highlight that (1) Salmon began to ascend the river when the sea surface water temperature (SST) decreased below 20℃; (2) The number of salmon ascending the river increased when the temperature difference between the upper and lower layers decreased, but decreased when the temperature difference was higher than 5℃; (3) The number of salmon ascending the river peaked, when the SST was 18℃-19℃ and sea levels rose at high tide. This study provide important insight into predicting changes in the ecosystem energy circulation through climate change at its southern distribution limit.

Keywords

Acknowledgement

이 논문은 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구(강원씨그랜트)와 2021년 국립수산과학원 수산과학연구사업(동해 연안어업 및 환경생태 조사, R2021032), 2021년도 강릉원주대학교 전임교원 연구년 지원에 의해 연구되었습니다. 그리고, 본 연구의 연어 하천 이동 시기 분석에 이용된 일자별 연어 작업량 자료를 제공하여 주신 경상북도 수산자원연구원 민물고기연구센터에 깊은 감사의 인사를 전해드립니다.

References

  1. Abe, T. K., Kitagawa, T., Makiguchi, Y., Sato, K., 2019, Chum salmon migrating upriver adjust to environmental temperatures through metabolic compensation, J. Exp. Biol., 222.
  2. Azumaya, T., Ishida, Y., 2005, Me5chanism of body cavity temperature regulation of chum salmon (Oncorhynchus keta) during homing migration in the North Pacific Ocean, Fish. Oceanogr., 14, 81-96. https://doi.org/10.1111/j.1365-2419.2004.00323.x
  3. Beacham, T. D., Murray, C. B., 1986, Sexual dimorphism in length of upper jaw and adipose fin of immature and maturing Pacific salmon (Oncorhynchus), Aquaculture, 58, 269-276. https://doi.org/10.1016/0044-8486(86)90092-X
  4. Beacham, T. D., Murray, C. B., 1987, Adaptive variation in body size, age, morphology, egg size, and developmental biology of chum salmon (Oncorhynchus keta) in British Columbia, Can. J. Fish. Aquat. Sci., 44, 244-261. https://doi.org/10.1139/f87-034
  5. Berman, C. H., Quinn, T. P., 1991, Behavioural thermoregulation and homing by spring chinook salmon in the Yakima River, J. Fish Biol., 39, 301-312. https://doi.org/10.1111/j.1095-8649.1991.tb04364.x
  6. Cheon, W. G., 2020, The Summer/Fall Variability of the Southern East/Japan Sea in the ENSO Period, Ocean Sci. J., 55, 341-352. https://doi.org/10.1007/s12601-020-0027-5
  7. Choi, Y. K., Jeong, H. D., Kwon, K. Y., 2010, Water distribution at the east coast of Korea in 2006, J. Environ. Sci. Int., 19, 399-406. https://doi.org/10.5322/JES.2010.19.4.399
  8. Engelhard, G. H., Righton, D. A., Pinnegar, J. K., 2014, Climate change and fishing: a century of shifting distribution in North Sea cod, GCB Bioenergy, 20, 2473-2483.
  9. Flecker, A. S., McIntyre, P. B., Moore, J. W., Anderson, J. T., Taylor, B. W., Hall, Jr. R. O., 2010 Migratory fishes as material and process subsidies in riverine ecosystems, Am. Fish. Soc. Symp., 73, 559-592.
  10. Gende, S. M., Quinn, T. P., Willson, M. F., Heintz, R., Scott, T. M., 2004, Magnitude and fate of salmon-derived nutrients and energy in a coastal stream ecosystem, J. Freshwater Ecol., 19, 149-160. https://doi.org/10.1080/02705060.2004.9664522
  11. Hinch, S. G., Standen, E. M., Healey, M. C., Farrell, A. P., 2002, Swimming patterns and behaviour of up-river migrating adult pink (Oncorhynchus gorbuscha) and sockeye (O.nerka) salmon as assessed by EMG telemetry in the Fraser River, British Columbia, Canada, Aquat. Telem., 483, 147-160.
  12. Ishida, Y., Yano, A., Ban, M., Ogura, M., 2001, Vertical movement of a chum salmon Oncorhynchus keta in the western North Pacific Ocean as determined by a depth-recording archival tag, Fish Sci., 67, 1030-1035. https://doi.org/10.1046/j.1444-2906.2001.00358.x
  13. Jeffries, K. M., Hinch, S. G., Donaldson, M. R., Gale, M. K., Burt, J. M., Thompson, L. A., Farrell, A. P., Patterson, D. A., Miller, K. M., 2011, Temporal changes in blood variables during final maturation and senescence in male sockeye salmon Oncorhynchus nerka: reduced osmoregulatory ability can predict mortality, J. Fish Biol., 79, 449-465. https://doi.org/10.1111/j.1095-8649.2011.03042.x
  14. Johnson, O. W., Grant, W. S., Kope, R. G., Neely, K. G., Waknitz, F. W., Waples, R. S., 1997, Status review of chum salmon from Washington, Oregon, and California, Rep. No. NOAA Technical Memorandom NMFS-NWFSC-32, U.S. Department of Commerce, Seattle.
  15. Jonsson, B., Jonsson, N., 2003, Migratory Atlantic salmon as vectors for the transfer of energy and nutrients between freshwater and marine environments, Freshwater Biol., 48, 21-27. https://doi.org/10.1046/j.1365-2427.2003.00964.x
  16. Kaeriyama, M., Seo, H., Qin, Y. X., 2014, Effect of global warming on the life history and population dynamics of Japanese chum salmon, Fish. Sci., 80, 251-260. https://doi.org/10.1007/s12562-013-0693-7
  17. Kim, B. S., 2021, Behavior patterns during spawning migration of Chum salmon (Oncorhynchus keta) along the coast and river in Gangwon, Korea, Master's thesis, Gangneung-Wonju National University, Gangwon, Korea.
  18. Kim, C. H., Kim, K., 1983, Characteristics and origin of the cold water mass along the east coast of Korea, Korean Soc. Oceanogr., 18, 73-83.
  19. Kitagawa, T., Hyodo, S., Sato, K., 2016, Atmospheric depression-mediated water temperature changes affect the vertical movement of chum salmon Oncorhynchus keta, Mar. Environ. Res., 119, 72-78. https://doi.org/10.1016/j.marenvres.2016.05.016
  20. Kovach, R. P., Joyce, J. E., Echave, J. D., Lindberg, M. S., Tallmon, D. A., 2013, Earlier migration timing, decreasing phenotypic variation, and biocomplexity in multiple salmonid species, PloS one, 8:e53807. https://doi.org/10.1371/journal.pone.0053807
  21. Kovach, R. P., Ellison, S. C., Pyare, S., Tallmon, D. A., 2015, Temporal patterns in adult salmon migration timing across southeast Alaska, GCB Bioenergy, 21, 1821-1833.
  22. Kuzishchin, K. V., Gruzdeva, M. A., Savvaitova, K. A., Pavlov, D. S., Stanford, J. A., 2010, Seasonal races of chum salmon Oncorhynchus keta and their interrelations in Kamchatka Rivers, J. Ichthyol., 50, 159-173. https://doi.org/10.1134/S0032945210020037
  23. Kwon, K. Y., Shim, J. H., Shim, J. M., 2019, Temporal Variations of Sea Water Environment and Nutrients in the East Coast of Korea in 2013~ 2017: Sokcho, Jukbyeon and Gampo Coastal Areas, J. Korean Soc. Mar. Environ. Saf., 25, 457-467. https://doi.org/10.7837/kosomes.2019.25.4.457
  24. Makino, K., Onuma, T. A., Kitahashi, T., Ando, H., Ban, M., Urano, A., 2007, Expression of hormone genes and osmoregulation in homing chum salmon: a minireview, Gen. Comp. Endocrinol., 152, 304-309. https://doi.org/10.1016/j.ygcen.2007.01.010
  25. Mayama, H., Ishida, Y., 2003, Japanese studies on the early ocean life of juvenile salmon, N. Pac. Anadr. Fish Comm. Bull, 3, 41-67.
  26. Minakawa, N., Gara, R. I., 1999, Ecological effects of a chum salmon (Oncorhynchus keta) spawning run in a small stream of the Pacific Northwest, J. Freshwater Ecol., 14, 327-335. https://doi.org/10.1080/02705060.1999.9663687
  27. Moon, C. H., Yang, H. S., Lee, K. W., 1996, Regeneration Processes of Nutrients in the Polar Front Area of the East Sea -Relationships between Water Mass and Nutrient Distribution Pattern in Autumn-, Korean J. Fish. Aquat. Sci., 29, 503-526.
  28. Ogura, M., Ishida, Y., 1995, Homing behavior and vertical movements of species of Pacific salmon (Oncorhynchus spp.) in the central Bering Sea, Can. J. Fish. Aquat. Sci., 52, 532-540. https://doi.org/10.1139/f95-054
  29. Ohwada, M., 1956, Diatom communities in the Okhotsk sea, principally on the west coast of Kamchatka, spring to summer 1955, J. Oceanogr. Soc. Jpn., 13, 29-34. https://doi.org/10.5928/kaiyou1942.13.29
  30. Onuma, T. A., Ban, M., Makino, K., Katsumata, H., Hu, W., Ando, H., Fukuwaka, M., Azumaya, T., Urano, A., 2010, Changes in gene expression for GH/PRL/SL family hormones in the pituitaries of homing chum salmon during ocean migration through upriver migration, Gen. Comp. Endocrinol., 166, 537-548. https://doi.org/10.1016/j.ygcen.2010.01.015
  31. Peirce, J. M., Otis, E. O., Wipfli, M. S., Follmann, E. H., 2011, Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska, North Am. J. Fish. Manage., 31, 315-322. https://doi.org/10.1080/02755947.2011.574080
  32. Peirce, J. M., Otis, E. O., Wipfli, M. S., Follmann, E. H., 2013, Interactions between brown bears and chum salmon at McNeil River, Alaska, Ursus, 24, 42-53. https://doi.org/10.2192/URSUS-D-12-00006.1
  33. Perry, A. L., Low, P. J., Ellis, J. R., Reynolds, J. D., 2005, Climate change and distribution shifts in marine fishes, Science, 308, 1912-1915. https://doi.org/10.1126/science.1111322
  34. Peter, R. E., Crim, L. W., 1979, Reproductive endocrinology of fishes: gonadal cycles and gonadotropin in teleosts, Annu. Rev. Physiol., 41, 323-335. https://doi.org/10.1146/annurev.ph.41.030179.001543
  35. Quinn, T. P., Adams, D. J., 1996, Environmental changes affecting the migratory timing of American shad and sockeye salmon, Ecology, 77, 1151-1162. https://doi.org/10.2307/2265584
  36. Rand, P. S., Hinch, S. G., Morrison, J., Foreman, M. G. G., MacNutt, M. J., Macdonald, J. S., Healey, M. C., Farrell, A. P., Higgs, D. A., 2006, Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser River sockeye salmon, Trans. Am. Fish. Soc., 135, 655-667. https://doi.org/10.1577/T05-023.1
  37. Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Mollmann, C., Pinnegar, J. K., 2009, Resolving the effect of climate change on fish populations, ICES J. Mar. Sci., 66, 1570-1583. https://doi.org/10.1093/icesjms/fsp056
  38. Seong, K. T., Hwang, J. D., Han, I. S., Go, W. J., Suh, Y. S., Lee, J. Y., 2010, Characteristic for long-term trends of temperature in the Korean waters, J Korean Soc. Mar. Environ. Saf., 16, 353-360.
  39. Tanaka, H., Takagi, Y., Naito, Y., 2000, Behavioural thermoregulation of chum salmon during homing migration in coastal waters, J. Exp. Biol., 203, 1825-1833. https://doi.org/10.1242/jeb.203.12.1825
  40. Taylor, S. G., 2008, Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska, GCB Bioenergy, 14, 229-235.
  41. Wagawa, T., Tamate, T., Kuroda, H., Ito, S. I., Kakehi, S., Yamanome, T., Kodama, T., 2016, Relationship between coastal water properties and adult return of chum salmon (Oncorhynchus keta) along the Sanriku coast, Japan, Fish. Oceanogr., 25, 598-609. https://doi.org/10.1111/fog.12175
  42. Weatherley, A. H., Gill, H. S., 1995, Growth, in: Groot, C., Margolis, L., Clarke W. C. (eds.), Pacific salmon life histories, University of British Columbia Press, Vancouver, 101-158.