• Title/Summary/Keyword: SSR Marker

Search Result 175, Processing Time 0.033 seconds

Genetics of Fusarium Wilt Resistance in Pigeonpea (Cajanus cajan) and Efficacy of Associated SSR Markers

  • Singh, Deepu;Sinha, B.;Rai, V.P.;Singh, M.N.;Singh, D.K.;Kumar, R.;Singh, A.K.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Inheritance of resistance to Fusarium wilt (FW) disease caused by Fusarium udum was investigated in pigeonpea using four different long duration FW resistant genotypes viz., BDN-2004-1, BDN-2001-9, BWR-133 and IPA-234. Based on the $F_2$ segregation pattern, FW resistance has been reported to be governed by one dominant gene in BDN-2004-1 and BDN-2001-9, two duplicate dominant genes in BWR-133 and two dominant complimentary genes in resistance source IPA-234. Further, the efficacy of six simple sequence repeat (SSR) markers namely, ASSR-1, ASSR-23, ASSR-148, ASSR-229, ASSR-363 and ASSR-366 reported to be associated with FW resistance were also tested and concluded that markers ASSR-1, ASSR-23, ASSR-148 will be used for screening of parental genotypes in pigeonpea FW resistance breeding programs. The information on genetics of FW resistance generated from this study would be used, to introgress FW resistance into susceptible but highly adopted cultivars through marker-assisted backcross breeding and in conventional breeding programs.

Construction of Genetic Linkage Map for Korean Soybean Genotypes using Molecular Markers

  • Jong Il Chung;Ye Jin Cho;Dae Jin Park;Sung Jin Han;Ju Ho Oh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.297-302
    • /
    • 2003
  • Genetic linkage maps serve the plant geneticist in a number of ways, from marker assisted selection in plant improvement to map-based cloning in molecular genetic research. Genetic map based upon DNA polymorphism is a powerful tool for the study of qualitative and quantitative traits in crops. The objective of this study was to develop genetic linkage map of soybean using the population derived from the cross of Korean soybean cultivar 'Kwangkyo, and wild accession 'IT182305'. Total 1,000 Operon random primers for RAPD marker, 49 combinations of primer for AFLP marker, and 100 Satt primers for SSR marker were used to screen parental polymorphism. Total 341 markers (242 RAPD, 83 AFLP, and 16 SSR markers) was segregated in 85 $\textrm{F}_2$ population. Forty two markers that shown significantly distorted segregation ratio (1:2:1 for codominant or 3:1 for domimant marker) were not used in mapping procedure. A linkage map was constructed by applying the computer program MAPMAKER/EXP 3.0 to the 299 marker data with LOD 4.0 and maximum distance 50 cM. 176 markers were found to be genetically linked and formed 25 linkage groups. Linkage map spanned 2,292.7 cM across all 25 linkage groups. The average linkage distance between pair of markers among all linkage groups was 13.0 cM. The number of markers per linkage group ranged from 2 to 55. The longest linkage group 3 spanned 967.4 cM with 55 makers. This map requires further saturation with more markers and agronomically important traits will be joined over it.

Analysis of Genetic Diversity and Identification of Domestic Bred Phalaenopsis Varieties Using SRAP and SSR Markers (SRAP과 SSR 마커를 이용한 국내 육성 팔레놉시스 품종의 유전적 다양성 분석과 품종판별)

  • Park, Pue Hee;Park, Yong-Jin;Kim, Mi Seon;Lee, Young Ran;Park, Pil Man;Lee, Dong Soo;Yae, Byeong Woo
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.337-343
    • /
    • 2013
  • The aims of this study were to compare genetic distances among 14 Phalaenopsis varieties using simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) marker systems and to determine the discrimination using SSR. A total of 111 SSR primers and 30 SRAP combinations were initially screened. Twelve SSR primers and thirty SRAP combinations showed high polymorphism among the 14 Phalaenopsis varieties including domestic breeding varieties, conserved in National Institute of Horticultural & Herbal Science (NIHHS). The amplified DNA fragments were separated by denaturing acrylamide gels and detected by silver staining method. A total of 474 polymorphic bands, including 55 by SSRs and 419 by SRAPs, were identified and used for genetic diversity analysis. Polymorphic bands were scored for calculating a simple matching coefficient of genetic similarity and cluster analysis with multi-variate statistical package (MVSP) 3.1. Fourteen Phalaenopsis varieties were classified into three major groups at similarity coefficient value of 0.683 and 0.66 using SRAP and SSR, respectively. Also we could discriminate these domestic breeding Palaenopsis varieties using only SSR 20 and SSR 22. The results indicate that SSR analysis is effective for discrimination among Phalaenopsis varieties and SRAP is useful for genetic diversity when there is no sequence information. These studied SSR and SRAP markers will be useful tools for genotype identification, germplasm conservation and genetic relationship study in Phalaenopsis.

Genetic diversity assessment of lily genotypes native to Korea based on simple sequence repeat markers

  • Kumari, Shipra;Kim, Young-Sun;Kanth, Bashistha Kumar;Jang, Ji-Young;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.158-164
    • /
    • 2019
  • Molecular characterization of different genotypes reveals accurate information about the degree of genetic diversity that helps to develop a proper breeding program. In this study, a total of 30 EST-based simple sequence repeat (EST-SSR) markers derived from trumpet lily (Lilium longiflorum) were used across 11 native lily species for their genetic relationship. Among these 30 markers, 24 SSR markers that showed polymorphism were used for evaluation of diversity spectrum. The allelic number at per locus ranged from 1 at SSR2 locus to 34 alleles at SSR15 locus, with an average of 11.25 alleles across 24 loci observed. The polymorphic information content, PIC, values ranged from 0.0523 for SSR9 to 0.9919 for SSR2 in all 24 loci with an average of 0.3827. The allelic frequency at every locus ranged from 0.81% at SSR2 locus to 99.6% at SSR14 locus. The pairwise genetic dissimilarity coefficient revealed the highest genetic distance with a value of 81.7% was in between L. dauricum and L. amabile. A relatively closer genetic distance was found between L. lancifolium and L. dauricum, L. maximowiczii and L. concolor, L. maximowiczii and L. distichum (Jeju), L. tsingtauense and L. callosum, L. cernuum and L. distichum (Jeju ecotype), of which dissimilarity coefficient was 50.0%. The molecular fingerprinting based on microsatellite marker could serve boldly to recognize genetically distant accessions and to sort morphologically close as well as duplicate accessions.

Genetic Diversity and Spatial Genetic Structure of Berchemia racemosa var. magna in Anmyeon Island (안면도 먹넌출 집단의 유전다양성과 공간적 유전구조)

  • Song, Jeong-Ho;Lim, Hyo-In;Jang, Kyeong-Hwan;Hong, Kyung-Nak;Han, Jingyu
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 2014
  • Berchemia racemosa var. magna is only found in Anmyeon Island of South Korea. Genetic diversity and the spatial genetic structure of B. racemosa var. magna in Anmyeon Island were studied by I-SSR marker system. Fifty I-SSR amplicons were produced from 8 selected primers. We used 13 polymorphic markers to analyze the genetic structure. Distribution of 39 individuals in the study plot($90m{\times}70m$) showed aggregate pattern (aggregation index = 0.706). Total 21 genets were observed from 39 individuals through I-SSR genotyping. Proportion of distinguishable genotype (G/N), genotype diversity (D) and genotype evenness (E) were 53.8%, 0.966 and 0.946, respectively. In spite of the small number and the narrow distribution, Shannon's diversity index (I = 0.598) was relatively high as compared with those of the other plant species. For ex situ genetic conservation of B. racemosa var. magna, the sampling strategy based on spatial autocorrelation using Tanimoto distance is efficient at choosing the conserved individuals with a 6 meter interval between individual trees.

Application of EST-SSR Marker for Purity Test of Watermelon F1 Cultivars (EST-SSR 마커 적용을 통한 수박 F1 품종 순도 검정)

  • Choi, Young-Mi;Hwang, Ji-Hyun;Kim, Kwang-Whan;Lee, Yong-Jae;Kang, Jeom-Sun;Choi, Young-Hwan;Son, Beung-gu;Park, Young-Hoon
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.85-92
    • /
    • 2012
  • This study was conducted to develop a set of EST-SSR marker for the purity test of commercial F1 hybrid cultivars in the watermelon. A total of 353 EST-SSR were selected and tested on seven F1 cultivars and their 11 parental lines achieved from NH Seeds Inc., Korea. Among tested 96 primer sets, WMU0056 for 'Orange', WMU0400 for 'Heukbo', WMU0056 and WMU0400 for 'Sindong', and WMU0056 and WMU0400 for 'Serona' revealed polymorphisms between the parental lines and heterozygosity from these F1 cultivers. Of 122 primer sets tested for 'Haedong', WMU0056, WMU0400, WMU0580, WMU1211, WMU4136, and WMU448 showed polymorphisms that were appropriate for the F1 purity test. WMU0056 and WMU0400 can be useful for 'Haedong', as well. Relatively low polymorphisms between parental lines were detected for 'Kulnara'(5%) and 'Hwangpea'(2%), and therefore, all 353 primer sets were tested on these cultivars. As the result, WMU5339 and WMU7003 were found to be useful for the F1 purity test in 'Kulnara' and 'Hwangpea', respectively. Using these EST-SSR markers developed by ICuGI, hybridity of the seeds for four F1 cultivars produced from farmers was evaluated, and levels of the F1 purity higher than 97.5% was observed from all seed populations. Our results indicated that the watermelon EST-SSR marker information posted in ICuGI could be utilized for developing codomiant and locus-specific markers that are highly effective for the F1 purity test.

Development of Doubled-haploid Population and Construction of Genetic Map Using SSR Markers in Rice (벼의 Doubled-haploid 집단육성과 SSR 마커를 이용한 유전자 지도작성)

  • Kim, Kyung-Min;Nam, Wu-Il;Kwon, Yong-Sham;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • A doubled-haploid (DH) population was developed through anther culture of F$_1$ plants obtained from a cross between a japonica cultivar, 'Nagdongbyeo', as male parent and a indica cultivar, 'Samgangbyeo', as female parent. Segregation modes for plant length, culm length, panicle length, third internode length, and days to heading in the DH lines showed nearly normal distribution with wide range of variation. A molecular map with 136 simple sequence repeat (SSR) markers was constructed using the DH population. The total map distance was 1,909 cM and the average interval of marker distance was 14 cM.

Quantitative Trait Loci for Stem Length in Soybean Using a Microsatellite Markers (콩에서 Microsatellite 마커를 이용한 양적형질 유전자의 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Kong, Hyeun-Jong;Park, In-Soo
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.339-344
    • /
    • 2004
  • Identification of individual quantitative trait loci (QTL) is a prerequisite to application of marker-assisted selection for stern length. Two simple sequence repeat (SSR)-based linkage maps were constructed from recombination inbred line populations between cross of Keunolkong and Shinpaldalkong. Two parents used differed greatly in stem length, which were 30.57 cm and 49.75 cm in Keunolkong and Shinpaldalkong, respectively. Using the constructed maps, regression analysis and interval mapping were performed to identify QTLs conferring stem length. Four QTLs for stem length on linkage groups (LG) F, J, N and O were identified in the Keunolkong ${\times}$ Shinpaldalkong population and they totally explained 37.83% of variation for stem length. In the population, two major QTLs on LG J and O conditioning 14.25% and 10.68% of the phenotypic variation in stem length were determined and two QTLs with minor effect were detected on LG F and N. Identification of QTLs for stem length and mapping individual locus should facilitate to describe genetic mechanisms for stem length in different population. SSR markers tightly linked to QTLs for stem length allow to accelerate the elimination of deleterious genes and selection for desirable recombinants at early stage in crop breeding programs.

Genetic Variation in Sprout-related Traits and Microsatellite DNA Loci of Soybean

  • Lee, Suk-Ha;Kyujung Van;Kim, Moon-Young;Gwag, Jae-Gyun;Bae, Kyung-Geun;Oh, Young-Jin;Kim, Kyong-Ho;Park, Ho-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.413-418
    • /
    • 2003
  • Genetic diversity and soybean sprout-related traits were evaluated in a total of 72 soybean accessions (60 Glycine max, 7 Glycine soja, and 5 Glycine gracilis). 100-seed weight (SW) was greatly varied and ranged from 3.2g to 32.3g in 72 soybean accessions. Positive correlation was observed between GR and hypocotyl length (HL), whereas negative correlation was observed between SW and hypocotyl diameter (HD). Re-evaluation by discarding two soybean genotypes characterized with low GR indicated that much higher correlation of sprout yield (SY) with HD and SW. Based on the principal component analysis (PCA) for sprout-related traits, 57 accessions were classified. Soybean genotypes with better traits for sprout, such as small size of seeds and high SY, were characterized with high PCA 1 and PCA 2 values. The seed size in second is small but showed low GR and SY, whereas the third has large seed, high GR and more than 400% SY. In genetic similarity analysis using 60 SSR marker genotyping, 72 accessions were classified into three major and several minor groups. Nine of twelve accessions that were identified as the representatives of soybean for sprout based on PCA were in a group by the SSR marker analysis, indicating the SSR marker selection of parental genotypes for soybean sprout improvement program.